

Confluences Mathématiques

21 November 2024, Paris, France

A practical introduction to Physics-Informed Neural Networks (PINNs)

Damien Bonnet-Eymard

About me

Damien Bonnet-Eymard
PhD student @ KU Leuven
ESR @Greydient

damien.bonnet-eymard@kuleuven.be

Physics-Informed neural networks for continuum mechanics applications

Marie Curie ITN project founded by the European commission

Greydient project: developing the grey-box methodology

- I. Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters
- IV. PINN to propagate uncertainty

I. Introduction to Physics-Informed Neural Networks

II. Improving the convergence of PINN

III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty

Brief history of Physics-Informed Neural Networks

Fig.1: Publication with title/abstract containing "Physics-Informed Neural Networks" on Dimensions (www.dimensions.ai)

Why **PINNs** are so popular?

- good at extrapolation/inverse problem
- benefits from late AI research
- · easily applicable to any topic

Motivation: solving a boundary value problem

Boundary Value Problem (BVP):

 $BC:\partial\Omega:\,f_{BC}(u)=0$

 $IC: u(t=0)=u_0$

Theory:

If well posed: (BC well defined)

Existence and **uniqueness** of u^1

The Ritz (Galerkin) method:

Discretization for numerical resolution

Physics-Informed Neural Networks

[1] « Picard–Lindelöf Theorem ». 2022. In Wikipedia.

Comparing PINN and FEM: choosing the trial function space

		Finite Element Method	Physics-Informed Neural Network
	Discretization	Mesh	Neural network architecture
	Trial/basis function	Piece-wise polynomials	Artificial neural network
	Parameters	Mesh nodal values	Network weight and biases
	Resolution	Matrix inversion	Stochastic optimization
	Hyper-parameter	Mesh (geometry, element)	Network, optimizer, implementation
	Solution*	Unique	Non-unique (optimization and generalization error)
Pros/ Cons	Boundary conditions	All are needed (inversible matrix)	Can be missing
	Incorporating measurement	Can be expensive (need iterative updating)	Seamless during training (adding a residual loss term)

Hyper-parameter are crucial for the convergence

^{*}of a well-posed problem for a given mesh/network

$$lacktriangledown$$
 PDE evaluation : $L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...) \right\|$

$$lacktriangledown$$
 BC value : $L_{BC/IC} = \sum_{X \in \partial \Omega} \|N(X) - u_{BC}(X)\|$

$$lacktriangledown$$
 Ground truth data : $L_U = \sum_{X \in \Omega} \|N(X) - u\|$

performed using Automatic Differentiation

Applying chain rule throw the network

Loss

$$L_{total} = L_{U} + L_{BC/IC} + L_{PDE}$$

Imposing boundary condition:

SOFT

Adding a loss term:

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

penalize non-respect of boundary conditions

HARD

Applying a mask function on the output:

$$u = F_{mask}[N(X)]$$

directly enforce boundary conditions

Loss

$$L_{total} = L_{U} + L_{BC/IC} + L_{PDE}$$

Imposing boundary condition:

SOFT

Adding a loss term

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

penalize non-respect of boundary conditions

HARD

Applying a mask function on the output:

$$u = F_{mask}[N(X)]$$
directly enforce boundary conditions

Hard BC example:

$$u_{x=0} = u_{x=1} = 0$$
$$u_{y=0} = u_{y=1} = \cos(2\pi x)$$

Loss

$$L_{total} = L_{U} + L_{BC/IC} + L_{PDE}$$

Imposing boundary condition:

SOFT

Adding a loss term :

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

penalize non-respect of boundary conditions

HARD

Applying a mask function on the output:

$$u = F_{mask}[N(X)]$$

directly enforce boundary conditions

Relaxed constraint

General and seamless to implement

Multi-term optimization (make convergence harder)

Exact imposition

Specific to every problem (generalization possible)

Better convergence

Hard BC example:

$$u_{x=0} = u_{x=1} = 0$$
$$u_{y=0} = u_{y=1} = \cos(2\pi x)$$

$$lacktriangledown$$
 PDE evaluation : $L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...) \right\|$

$$lacktriangledown$$
 BC value : $L_{BC/IC} = \sum_{X \in \partial \Omega} \lVert N(X) - u_{BC}(X)
Vert$

$$lacktriangledown$$
 Ground truth data : $L_U = \sum_{X \in \Omega} \|N(X) - u\|$

performed using **A**utomatic **D**ifferentiation

Applying chain rule throw the network

$$L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...) \right\|$$

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

$$L_U = \sum_{X \in \Omega} \|N(X) - u\|$$

Forward problem:

no need for labeled data

performed using Automatic Differentiation

Applying chain rule throw the network

$$L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...) \right\|$$

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

$$L_{U} = \sum_{X \in \Omega} ||N(X) - u||$$

Forward problem:

no need for labeled data

Inverse problem:

Determining PDE parameters

$$F_{p_i}(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...)$$
 p_i : model parameters

PINN to solve 1D Poisson equation

$$\begin{cases} -\frac{\partial^2 u}{\partial x^2} = \pi^2 \sin(\pi x), & x \in [0,1] \\ u(0) = u(1) = 0 \end{cases}$$

Exact solution : $u(x) = \sin(\pi x)$

PyTorch

```
import torch
import torch.nn as nn
 import torch.optim as optim
class PINN(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(1, 20), nn.Tanh(),
            nn.Linear(20, 20), nn.Tanh(),
            nn.Linear(20, 1)
    def forward(self, x):
        return self.net(x)
def poisson_residual(x, model):
    u = model(x)
    u_x = torch.autograd.grad(u, x, torch.ones_like(u), create_graph=True)[0]
    u_xx = torch.autograd.grad(u_x, x, torch.ones_like(u_x), create_graph=True)[0]
    f = torch.pi**2*torch.sin(torch.pi * x)
    return (-u_xx - f).pow(2).mean() # Residual loss
def boundary_loss(model):
    return model(torch.tensor([[0.0]]))**2 + model(torch.tensor([[1.0]]))**2 # Enforce u(0)=u(1)=0
model = PINN()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(1000):
    x = torch.rand(100, 1, requires_grad=True)
    loss = poisson_residual(x, model) + boundary_loss(model)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if epoch % 100 = 0:
        print(f"Epoch {epoch}, Loss: {loss.item()}")
```


PINN to solve 1D Poisson equation

$$\begin{cases} -\frac{\partial^2 u}{\partial x^2} = \pi^2 \sin(\pi x), & x \in [0,1] \\ u(0) = u(1) = 0 \end{cases}$$

Exact solution : $u(x) = \sin(\pi x)$

DeepXDE

```
. .
import deepxde as dde
import torch
def pde(x, y):
    dy_x = dde.grad.hessian(y, x)
    return -dy_xx - np.pi ** 2 * torch.sin(np.pi * x)
def boundary(x, on_boundary):
    return on_boundary
def func(x):
    return np.sin(np.pi * x)
geom = dde.geometry.Interval(-1, 1)
bc = dde.icbc.DirichletBC(geom, func, boundary)
data = dde.data.PDE(geom, pde, bc, 16, 2, solution=func, num_test=100)
layer_size = [1] + [50] * 3 + [1]
activation = "tanh"
initializer = "Glorot uniform"
net = dde.nn.FNN(layer_size, activation, initializer)
model = dde.Model(data, net)
model.compile("adam", lr=0.001, metrics=["l2 relative error"])
losshistory, train_state = model.train(iterations=10000)
```

and the Second Section in Section 2019

PINN software

- DeepXDE¹
- SciANN
- NeuroDiffEq
- IDRLnet
- ...

- NeuralPDE.jl

- Modulus

DeepXDE

A library for scientific machine learning and physics-informed learning

- Multi-backend : Tensorflow, Pytorch, JAX...
- Simplified implementation, lot of features
- Very active community, latest research implemented
- Well documented with a lot of examples

Literature review of PINN

Review papers

Github repository

1000+ papers by category

- Application papers Mechanics, Chemistry, Robotics, ...
- **Network architecture** Convolution, Graph Network, **Separable-PINN**, KAN...
- **New implementation** Variational form, Mixed PINN...
- **Extension** Uncertainty Quantification...
- Improving training Sampling strategy, Fourier features, Loss balance...

Convergence issues

^[2] Cuomo, Salvatore, Vincenzo Schiano di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and Francesco Piccialli. "Scientific Machine Learning through Physics-Informed Neural Networks: Where We Are and What's Next." arXiv, June 7, 2022. https://doi.org/10.48550/arXiv.2201.05624 [3] Toscano, Juan Diego, Vivek Oommen, Alan John Varghese, Zongren Zou, Nazanin Ahmadi Daryakenari, Chenxi Wu, and George Em Karniadakis. "From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning." arXiv, October 22, 2024. https://doi.org/10.48550/arXiv.2410.13228.

^[1] Karniadakis, George Em, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. "Physics-Informed Machine Learning." Nature Reviews Physics 3, no. 6 (June 2021): 422-40. https://doi.org/10.1038/s42254-021-00314-5

I. Introduction to Physics-Informed Neural Networks

II. Improving the convergence of PINN

III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty

I. Introduction to Physics-Informed Neural Networks

II. Improving the convergence of PINN

III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty

Techniques from the literature

An Expert's Guide to Training
Physics-informed Neural Networks

Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

Non-dimensionalization

Fourier features

Causal/curriculum training

Loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- Separable PINN
- Kolmogorov-Arnold Network

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

PINNs framework for continuum mechanics

Boundary Value Problem (BVP):

Boundary conditions:

$$\partial \Omega_{
m u}: \ u = u_{BC} \qquad \qquad ext{in displacement} \ \partial \Omega_f: \ \sigma. \ ec{n} = ec{F}_{BC} \qquad \qquad ext{in stress}$$

Fields:

u	displacement	
ε	strain tensor	Which output for the network?
σ	stress tensor	

Equations:

$$egin{aligned} arepsilon_{ij} &= rac{1}{2} \left(u_{i,j} + u_{j,i}
ight) & ext{small deformation} \ \hline \sigma_{ij} &= f(arepsilon_{ij}) & ext{material law} \ \hline \sigma_{ij,j} + f_i &= 0 & ext{momentum balance} \end{aligned}$$

PINNs framework for continuum mechanics

Which output for the network?

 $u? \sigma? both?$

Goal: maximise the number of hard constraint

Hard boundary condition only on the output of a neural network

	DIRECT	PARALLEL
BC_u	Hard	Hard
BC_{σ}	Soft	Hard
Material law	Hard	Soft

+ limit the order of the derivatives

Techniques from the literature

- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- Separable PINN
- Kolmogorov-Arnold Network

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

Techniques from the literature

- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- Separable PINN
- Kolmogorov-Arnold Network

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

Introduction to Separable-PINN

Fig. 1: SPINN architecture for a 3D problem

- > A different network for each dimension
- Low-rank tensor approximation
- > Expressive enough

Fig. 2: Illustrative example of factorizable-coordinates constraint required for SPINN sampling

- > Faster computation
- $ightharpoonup N^d$ points for the price of $N \times d$
- Bring limitations in the geometry

PINN for continuum mechanics : example from literature¹

Domain and boundary condition:

Volumic forces:

$$\begin{split} f_x &= \lambda \left[4\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Q y^3 \right] \\ &+ \mu \left[9\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Q y^3 \right] \\ f_y &= \lambda \left[-3\sin(\pi x) Q y^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) \right] \\ &+ \mu \left[-6\sin(\pi x) Q y^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) + \pi^2 \sin(\pi x) Q y^4 / 4 \right]. \end{split}$$

Exact solution:

$u_x(x,y) = \cos(2\pi x)\sin(\pi y),$ $u_y(x,y) = \sin(\pi x)Qy^4/4.$

Parameters:

$$\lambda = 1$$

$$\mu = 0.5$$

Fig. 2: Exact displacement and stress solution of the problem

PINN vs SPINN on a continuum mechanics example

Techniques from the literature

- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- Separable PINN
- Kolmogorov-Arnold Network

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

Techniques from the literature

- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- Separable PINN
- Kolmogorov-Arnold Network

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

Introduction to Physics-Informed Neural Networks

II. Improving the convergence of PINN

III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty

- I. Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty

Resources

Presented at ISRERM 2024 conference - Available on ResearchGate

Code and results are available online:

www.github.com/bonneted/ISRERM2024

SPINN branch of DeepXDE

- bonneted/deepxde at SPINN (github.com)
- > still under development

Inverse quantification from full field measurements

Digital Image Correlation

Inverse quantification from full field measurements

PINNs for continuum mechanics: case study from literature¹

Domain and boundary condition:

Volumic forces:

$$f_x = \lambda \left[4\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Q y^3 \right]$$

$$+ \mu \left[9\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Q y^3 \right]$$

$$f_y = \lambda \left[-3\sin(\pi x) Q y^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) \right]$$

$$+ \mu \left[-6\sin(\pi x) Q y^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) + \pi^2 \sin(\pi x) Q y^4 / 4 \right] .$$

Parameters: Exact solution: $u_x(x,y) = \cos(2\pi x)\sin(\pi y),$ $u_y(x,y) = \sin(\pi x)Qy^4/4.$ $\mu = 0.5$ **Find elasticity** parameters + measurements ground truth displacement -0.50-0.75Syy* Sxx*

Fig. 2: Exact displacement and stress solution of the problem

Inverse quantification of elasticity parameters : SPINN

Inverse quantification benchmark from the literature¹

16 simulated measurements

Using FEM as the reference

Strain corrupted with noise

1με gaussian noise (≈ 10% of std.)

	E (GPa)	ν	E - Error(%)	ν - Error(%)
Reference	210.00	0.3000		
FEMU	203.90	0.2706	2.90	9.789
CEGM	204.55	0.2728	2.59	9.058
EGM	195.10	0.2356	7.09	21.436
VFM	205.14	0.2753	2.31	8.207

Compare with SPINN

[1] Martins, J.M.P., António Andrade-Campos, et Sandrine Thuillier. 2018. « Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements ». International Journal of Mechanical Sciences 145 (septembre): 330-45.

Benchmark from the literature: SPINN results

16 simulated measurements *Using FEM as the reference*

Strain corrupted with noise

1με gaussian noise (≈ 10% of std.)

	E (GPa)	ν	E - Error(%)	ν - Error(%)
Reference	210.00	0.3000		
FEMU	203.90	0.2706	2.90	9.789
CEGM	204.55	0.2728	2.59	9.058
EGM	195.10	0.2356	7.09	21.436
VFM	205.14	0.2753	2.31	8.207
SPINN	209.5	0.2952	0.24	1.667

SPINN 10x more accurate

Expected: regression model dealing with an unbiased noise

- Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty

- Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters
- IV. PINN to propagate uncertainty

Resources

Physics-Informed Neural Networks to propagate random field properties of composite materials

D. Bonnet-Eymard, A. Persoons, P. Gavallas, M. GR Faes, G. Stefanou, D. Moens

Presented at USD 2024 conference - Available on ResearchGate

Code and results are available online:

www.github.com/bonneted/USD2024

Polynomial Chaos Expansion (PC)

Resolution (determining y_{α}):

- sampling
- y_{α} determined using least squares, least angle...

Space dependent output : $Y(\xi, x)$?

- discretization of the output (PCA...)
- Spatially dependant coefficients

Space dependent Polynomial Chaos Expansion

Resolution (determining y_{α}):

- sampling
- y_{α} determined using least squares, least angle...

Space dependent output : $Y(\xi, x)$?

- discretization of the output (PCA...)
- Spatially dependant coefficients
- Use a Neural Network as the approximator :

$$y_{\alpha}(x) = NN(x)$$
 PINN-PC

PINN-PC¹

Fig. 1: Schematic representation of the PINN-PC framework.

Several coefficients to predict:

- grouping them by their polynomial degree
- using a separate neural network for each group

Increase the computational cost

by a factor N = the number of samples

Poisson equation: reference solution

Problem setup:

Poisson equation

$$-rac{\mathrm{d}^2}{\mathrm{d}x^2}u=f(x;\omega),\quad x\in[-1,1] ext{ and } \omega\in\Omega,$$
 $u(-1)=u(1)=0.$

Forcing term

$$f(x;\omega) \sim \mathcal{GP}(f_0(x), \text{Cov}(x,x'))$$

$$f_0(x) = 10\sin(\pi x)$$

$$\operatorname{Cov}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{l_c^2}\right),$$

Finite difference solution:

Fig. 2: Mean and standard deviation of the solution computed using 10⁶ Monte Carlo simulations.

Poisson equation: random field discretization

Discretization of $f(x, \omega)$:

Forcing term

$$f(x;\omega) \sim \mathcal{GP}(f_0(x), \mathrm{Cov}(x,x'))$$

$$f_0(x) = 10\sin(\pi x)$$

$$\operatorname{Cov}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{l_c^2}\right),$$

Karhunen–Loève expansion

$$f(x) = f_0(x) + \sum_{n=1}^{\infty} \sqrt{\lambda_n} \, \phi_n(x) \, \xi_n$$

On a discrete space :

$$Cov(x, x') = Mcov$$

K-L ↔ Spectral decomposition **of** *Mcov*

Fig. 3: Eigendecomposition of the covariance matrix to construct the K-L expansion.

Keep 6 order to have 99% explained variance

- *GP* represented by 6 variables : $(\xi_1, \xi_2 ... \xi_6)$
- 1 order PCE : only 6 polynomials $\Psi_i(\xi) = \xi_i$

Poisson equation: implementation

Neural Network

- MeanNN: [1, 4, 4, 1], to approximate $u_0(x)$
- CoeffNN: [1, 36, 36, 36, 36, 6], to approximate $y_{\alpha}(x)$
- Tanh activation function

Fig. 4: approximated PCE coefficients

Training:

- 1000 samples of f
- 13 training points in [-1, 1]
- Adam (20000 epochs, Ir = 1e-3)

Fig. 5: Mean and standard deviation of the solution

- Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters
- IV. PINN to propagate uncertainty

Conclusion

PINN: a powerful tool that is becoming increasingly mature

Idea: use an **artificial neural network** to approximate the solution of a **boundary value problem** defined by a partial differential equation (**PDE**) and boundary conditions (**BCs**)

Physics-Informed loss function : $L_{total} = L_U + L_{BC/IC} + L_{PDE}$

- L_{PDE}: PDE calculated through automatic differentiation
- $L_{BC/IC}$: Residual between PINN approximation and BCs values
- L_{II} : Residual between PINN approximation and measurements

loss minimized

compliance to the PDE, BCs and data

The training (i.e., finding the network parameters that minimize the loss) rely on stochastic optimization and can struggle to converge

Techniques to improve convergence

- Hard constraints
- Mixed formulation
- Separable-PINN
- Adaptative sampling

Possible applications

- Inverse quantification
- Uncertainty propagation

Damien Bonnet-Eymard
PhD student at KU Leuven
damien.bonnet-eymard@kuleuven.be

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 955393.

GREYDIENT project Marie Sklodowska-Curie Actions www.greydient.eu

