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Greydient project : developing the grey-box methodology

Introduction

Grey box

data

theory

Black boxWhite box

most practical application

some physics – some data
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Brief history of Physics-Informed Neural Networks

I – Introduction to Physics-Informed Neural Networks

2017

2019

Physics Informed Deep Learning (Part I): Data-driven 
Solutions of Nonlinear Partial Differential Equations

Maziar Raissi, Paris Perdikaris, George Em Karniadakis

Physics-informed neural networks: A deep learning 
framework for solving forward and inverse problems 
involving nonlinear partial differential equations

Maziar Raissi, Paris Perdikaris, George Em Karniadakis

11621+ citations

Why PINNs are so popular ?

• good at extrapolation/inverse problem

• benefits from late AI research

• easily applicable to any topic

Fig.1 : Publication with title/abstract containing “Physics-Informed 

Neural Networks” on Dimensions (www.dimensions.ai)

Convergence issues
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Motivation: solving a boundary value problem

I – Introduction to Physics-Informed Neural Networks

Boundary Value Problem (BVP):

[1] « Picard–Lindelöf Theorem ». 2022. In Wikipedia.

𝐁𝐂 ∶ 𝛛𝛀 ∶  𝒇𝑩𝑪 𝒖 = 𝟎

𝐈𝐂 ∶ 𝒖 𝒕 = 𝟎 = 𝒖𝟎

F(෤u,
𝜕෤u

𝜕X
,
𝜕෤u

𝜕t
, ...)=0

governing equations 

𝛀
𝒖

𝛛𝛀 

The Ritz (Galerkin) method :

Discretization for numerical resolution

Finite Element Method

Physics-Informed Neural Networks

If well posed : (BC well defined)

Existence and uniqueness of 𝒖1

Theory :



Finite Element Method
Physics-Informed Neural

Network

Discretization Mesh Neural network architecture

Trial/basis function Piece-wise polynomials Artificial neural network

Parameters Mesh nodal values Network weight and biases

Resolution Matrix inversion Stochastic optimization

Hyper-parameter Mesh (geometry, element) Network, optimizer, implementation
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Comparing PINN and FEM : choosing the trial function space 

I – Introduction to Physics-Informed Neural Networks

Pros/

Cons

Solution* Unique
Non-unique
(optimization and generalization error)

Boundary conditions
All are needed
(inversible matrix)

Can be missing

Incorporating 

measurement
Can be expensive
(need iterative updating)

Seamless during training
(adding a residual loss term)

*of a well-posed problem for a given mesh/network

Hyper-parameter 

are crucial for the 

convergence
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PINNs for a boundary value problem

I – Introduction to Physics-Informed Neural Networks

𝑋

𝑡
⋮ ⋮

෤𝑢

𝜕

𝜕𝑋

𝜕

𝜕𝑡

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑳𝑼 + 𝑳𝑩𝑪/𝑰𝑪 + 𝑳𝑷𝑫𝑬

F( ෤𝑢,
𝜕 ෤𝑢

𝜕𝑋
,
𝜕 ෤𝑢

𝜕𝑡
, ...)=0

Loss

PDE

backpropagation

Neural Network
PINNs complement 𝛀𝛛𝛀 

Ground truth data :

PDE evaluation :

BC value :

𝑳𝑼 = ෍

𝑿∈𝜴

𝑵 𝑿 − 𝒖

𝑳𝑷𝑫𝑬 = ෍

𝑿∈𝜴

F(෥𝒖,
𝝏෥𝒖

𝝏𝑿
,
𝝏෥𝒖

𝝏𝒕
, ...)

𝑳𝑩𝑪/𝑰𝑪 = ෍

𝑿∈𝝏𝜴

𝑵 𝑿 − 𝒖𝑩𝑪 𝑿

𝜕

𝜕𝑋

𝜕

𝜕𝑡 performed using Automatic Differentiation

Applying chain rule throw the network
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PINNs for a boundary value problem

I – Introduction to Physics-Informed Neural Networks

Imposing boundary condition :

SOFT HARD

Adding a loss term :

𝒖 = 𝑭𝒎𝒂𝒔𝒌[𝑵 𝑿 ]

Applying a mask function on the output : 

directly enforce boundary conditionspenalize non-respect of boundary conditions

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑳𝑼 + 𝑳𝑩𝑪/𝑰𝑪 + 𝑳𝑷𝑫𝑬

Loss

𝑳𝑩𝑪/𝑰𝑪 = ෍

𝑿∈𝝏𝜴

𝑵 𝑿 − 𝒖𝑩𝑪 𝑿



𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑳𝑼 + 𝑳𝑩𝑪/𝑰𝑪 + 𝑳𝑷𝑫𝑬

Loss
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PINNs for a boundary value problem

I – Introduction to Physics-Informed Neural Networks

Imposing boundary condition :

SOFT HARD

Adding a loss term : ×

+

=

NN output

Mask function

BC function

BC compliant 

output

= 0 𝑜𝑛 𝜕Ω𝐵𝐶

≠ 0 𝑒𝑙𝑠𝑤ℎ𝑒𝑟𝑒

= 𝑈𝐵𝐶  𝑜𝑛 𝜕Ω𝐵𝐶  

𝑢𝑥=0 = 𝑢𝑥=1 = 0

𝑢𝑦=0 = 𝑢𝑦=1 = cos(2𝜋𝑥) 

Hard BC example :

𝒖 = 𝑭𝒎𝒂𝒔𝒌[𝑵 𝑿 ]

Applying a mask function on the output : 

directly enforce boundary conditionspenalize non-respect of boundary conditions

𝑳𝑩𝑪/𝑰𝑪 = ෍

𝑿∈𝝏𝜴

𝑵 𝑿 − 𝒖𝑩𝑪 𝑿
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PINNs for a boundary value problem

I – Introduction to Physics-Informed Neural Networks

Imposing boundary condition :

SOFT HARD

Adding a loss term : ×

+

=

NN output

Mask function

BC function

BC compliant 

output

= 0 𝑜𝑛 𝜕Ω𝐵𝐶

≠ 0 𝑒𝑙𝑠𝑤ℎ𝑒𝑟𝑒

= 𝑈𝐵𝐶  𝑜𝑛 𝜕Ω𝐵𝐶  

𝑢𝑥=0 = 𝑢𝑥=1 = 0

𝑢𝑦=0 = 𝑢𝑦=1 = cos(2𝜋𝑥) 

Hard BC example :

𝒖 = 𝑭𝒎𝒂𝒔𝒌[𝑵 𝑿 ]

Applying a mask function on the output : 

directly enforce boundary conditionspenalize non-respect of boundary conditions

Relaxed constraint Exact imposition

General and seamless to implement
Specific to every problem
(generalization possible)

Multi-term optimization 
(make convergence harder)

Better convergence

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑳𝑼 + 𝑳𝑩𝑪/𝑰𝑪 + 𝑳𝑷𝑫𝑬

Loss

𝑳𝑩𝑪/𝑰𝑪 = ෍

𝑿∈𝝏𝜴

𝑵 𝑿 − 𝒖𝑩𝑪 𝑿



𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑳𝑼 + 𝑳𝑩𝑪/𝑰𝑪 + 𝑳𝑷𝑫𝑬

Loss
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PINNs for a boundary value problem

I – Introduction to Physics-Informed Neural Networks

𝑋

𝑡
⋮ ⋮

෤𝑢

𝜕

𝜕𝑋

𝜕

𝜕𝑡

F( ෤𝑢,
𝜕 ෤𝑢

𝜕𝑋
,
𝜕 ෤𝑢

𝜕𝑡
, ...)=0

PDE

backpropagation

Neural Network
PINNs complement 𝛀𝛛𝛀 

Ground truth data :

PDE evaluation :

BC value :

𝑳𝑼 = ෍

𝑿∈𝜴

𝑵 𝑿 − 𝒖

𝑳𝑷𝑫𝑬 = ෍

𝑿∈𝜴

F(෥𝒖,
𝝏෥𝒖

𝝏𝑿
,
𝝏෥𝒖

𝝏𝒕
, ...)

𝜕

𝜕𝑋

𝜕

𝜕𝑡 performed using Automatic Differentiation

Applying chain rule throw the network

𝑳𝑩𝑪/𝑰𝑪 = ෍

𝑿∈𝝏𝜴

𝑵 𝑿 − 𝒖𝑩𝑪 𝑿



𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑳𝑼 + 𝑳𝑩𝑪/𝑰𝑪 + 𝑳𝑷𝑫𝑬

Loss

𝑋

𝑡
⋮ ⋮

෤𝑢

𝜕

𝜕𝑋

𝜕

𝜕𝑡

F( ෤𝑢,
𝜕 ෤𝑢

𝜕𝑋
,
𝜕 ෤𝑢

𝜕𝑡
, ...)=0

PDE

backpropagation

Neural Network
PINNs complement

𝑳𝑼 = ෍

𝑿∈𝜴

𝑵 𝑿 − 𝒖
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PINNs for a boundary value problem

I – Introduction to Physics-Informed Neural Networks

𝜕

𝜕𝑋

𝜕

𝜕𝑡 performed using Automatic Differentiation

Applying chain rule throw the network

Forward problem :

no need for labeled data

𝑳𝑩𝑪/𝑰𝑪 = ෍

𝑿∈𝝏𝜴

𝑵 𝑿 − 𝒖𝑩𝑪 𝑿

𝑳𝑷𝑫𝑬 = ෍

𝑿∈𝜴

F(෥𝒖,
𝝏෥𝒖

𝝏𝑿
,
𝝏෥𝒖

𝝏𝒕
, ...)
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PINNs for a boundary value problem

I – Introduction to Physics-Informed Neural Networks

𝜕

𝜕𝑋

𝜕

𝜕𝑡 performed using Automatic Differentiation

Applying chain rule throw the network

Forward problem :

no need for labeled data

Inverse problem :

Determining PDE parameters

𝑭𝒑𝒊
(෥𝒖,

𝝏෥𝒖

𝝏𝑿
,

𝝏෥𝒖

𝝏𝒕
, ...) 𝒑𝒊 : model

parameters

𝑳𝑼 = ෍

𝑿∈𝜴

𝑵 𝑿 − 𝒖

𝑳𝑩𝑪/𝑰𝑪 = ෍

𝑿∈𝝏𝜴

𝑵 𝑿 − 𝒖𝑩𝑪 𝑿

𝑳𝑷𝑫𝑬 = ෍

𝑿∈𝜴

F(෥𝒖,
𝝏෥𝒖

𝝏𝑿
,
𝝏෥𝒖

𝝏𝒕
, ...)

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑳𝑼 + 𝑳𝑩𝑪/𝑰𝑪 + 𝑳𝑷𝑫𝑬

Loss

𝑋

𝑡
⋮ ⋮

෤𝑢

𝜕

𝜕𝑋

𝜕

𝜕𝑡

F( ෤𝑢,
𝜕 ෤𝑢

𝜕𝑋
,
𝜕 ෤𝑢

𝜕𝑡
, ...)=0

PDE

backpropagation

Neural Network
PINNs complement
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PINN to solve 1D Poisson equation

I – Introduction to Physics-Informed Neural Networks

PyTorch

−
𝜕2𝑢

𝜕𝑥2 = 𝜋2 sin 𝜋𝑥 ,   𝑥 ∈ 0,1

𝑢(𝑥) = sin 𝜋𝑥

𝑢 0 = 𝑢 1 = 0

Exact solution :

https://youtu.be/_6RAV_PpeB4


DeepXDE
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PINN to solve 1D Poisson equation

I – Introduction to Physics-Informed Neural Networks

−
𝜕2𝑢

𝜕𝑥2 = 𝜋2 sin 𝜋𝑥 ,   𝑥 ∈ 0,1

𝑢(𝑥) = sin 𝜋𝑥

𝑢 0 = 𝑢 1 = 0

Exact solution :
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PINN software

I – Introduction to Physics-Informed Neural Networks

- DeepXDE1

- SciANN

- NeuroDiffEq

- IDRLnet

- …

Python

Julia

Nvidia

- NeuralPDE.jl

- Modulus

DeepXDE
A library for scientific machine learning and physics-informed learning

➢ Multi-backend : Tensorflow, Pytorch, JAX…

➢ Simplified implementation, lot of features

➢ Very active community, latest research implemented 

➢ Well documented with a lot of examples

[1] Lu, Lu, Xuhui Meng, Zhiping Mao, et George E. Karniadakis. 2021. « DeepXDE: A deep learning library for solving differential equations ». SIAM Review 63 (1): 208-28. https://doi.org/10.1137/19M1274067

https://doi.org/10.1137/19M1274067
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Literature review of PINN

I – Introduction to Physics-Informed Neural Networks

[1] Karniadakis, George Em, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. “Physics-Informed Machine Learning.” Nature Reviews Physics 3, no. 6 (June 2021): 422–40. https://doi.org/10.1038/s42254-021-00314-5.

[2] Cuomo, Salvatore, Vincenzo Schiano di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and Francesco Piccialli. “Scientific Machine Learning through Physics-Informed Neural Networks: Where We Are and What’s Next.” arXiv, June 7, 2022. https://doi.org/10.48550/arXiv.2201.05624

[3] Toscano, Juan Diego, Vivek Oommen, Alan John Varghese, Zongren Zou, Nazanin Ahmadi Daryakenari, Chenxi Wu, and George Em Karniadakis. “From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning.” arXiv, October 22, 2024. https://doi.org/10.48550/arXiv.2410.13228.

.

• Application papers
Mechanics, Chemistry, Robotics,…

• Network architecture
Convolution, Graph Network, Separable-PINN, KAN…

• New implementation
Variational form, Mixed PINN…

• Extension
Uncertainty Quantification…

• Improving training
Sampling strategy, Fourier features, Loss balance…

Physics-informed machine learning

Scientific Machine Learning through Physics-Informed 
Neural Networks: Where we are and What's next

From PINNs to PIKANs: Recent Advances in Physics-
Informed Machine Learning

2021

2022

2024

Review papers

Github repository

bitzhangcy/Neural-PDE-Solver

1000+ papers by category
Convergence issues

https://doi.org/10.48550/arXiv.2201.05624
https://github.com/bitzhangcy/Neural-PDE-Solver
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Techniques from the literature

II – Improving the convergence of PINN

Wang, Sifan, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert’s Guide to Training Physics-Informed Neural Networks, 2023.

An Expert's Guide to Training 
Physics-informed Neural Networks
Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

▪ Non-dimensionalization

▪ Fourier features

▪ Causal/curriculum training

▪ Loss weighting strategies

Problem implementation

▪ Maximizing hard constraints

▪ Mixed-PINN formulation

Optimization algorithm

▪ Adam + LBFGS

▪ Adaptative sampling

Network architecture

▪ Separable PINN

▪ Kolmogorov-Arnold Network
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PINNs framework for continuum mechanics

II – PINNs applied to continuum mechanics

Which output for 

the network ?

𝐿𝑃𝐷𝐸 = ෍

෥𝜎∈Ω

෦𝜎𝑖𝑗,𝑗 + 𝑓𝑖

Boundary Value Problem (BVP):

governing equations 

𝛀
𝒖 , 𝝈

𝛛𝛀 

𝝈𝒊𝒋,𝒋 + 𝒇𝒊 = 𝟎

𝝈𝒊𝒋 = 𝒇(𝜺𝒊𝒋)

𝜺𝒊𝒋 =
𝟏

𝟐
 (𝒖𝒊,𝒋 + 𝒖𝒋,𝒊)

momentum balance 

small deformation

material law

Equations :

Fields :

𝝈

𝜺

𝒖

stress tensor

strain tensor

displacement

Boundary conditions :

𝛛𝛀𝒇 ∶  𝝈. 𝒏 = 𝑭𝑩𝑪

𝛛𝛀𝐮 ∶  𝒖 = 𝒖𝑩𝑪

in stress

in displacement
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PINNs framework for continuum mechanics

Goal : maximise the number of hard constraint

PARALLELDIRECT

𝒖 ?  𝝈 ?  𝒃𝒐𝒕𝒉 ?

DIRECT PARALLEL

𝑩𝑪𝑢 Hard Hard

𝑩𝑪σ Soft Hard

Material law Hard Soft

Hard boundary condition only on the 

output of a neural network

𝑿

𝒖

𝜺

𝝈

𝑳𝑷𝑫𝑬

𝑳𝑴𝑩

𝑏
𝑎

𝑐𝑘
𝑝

𝑟𝑜
𝑝

𝑎
𝑔

𝑎
𝑡𝑖

𝑜
𝑛

linear elasticity

small deformation 

𝑁𝑢,𝜎

𝑿

𝒖

𝑁𝑢

𝜺

𝝈

𝑳𝑷𝑫𝑬

𝑳𝑩𝑪
𝝈

𝑏
𝑎

𝑐𝑘
𝑝

𝑟𝑜
𝑝

𝑎
𝑔

𝑎
𝑡𝑖

𝑜
𝑛

small deformation 

linear elasticity

II – PINNs applied to continuum mechanics

Which output for 

the network ?

+ limit the order of 

the derivatives
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Techniques from the literature

II – Improving the convergence of PINN

Wang, Sifan, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert’s Guide to Training Physics-Informed Neural Networks, 2023.

An Expert's Guide to Training 
Physics-informed Neural Networks
Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

▪ non-dimensionalization

▪ Fourier feature

▪ causal/curriculum training

▪ loss weighting strategies

Problem implementation

▪ Maximizing hard constraints

▪ Mixed-PINN formulation

Optimization algorithm

▪ Adam + LBFGS

▪ Adaptative sampling

Network architecture

▪ Separable PINN

▪ Kolmogorov-Arnold Network
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Techniques from the literature

II – Improving the convergence of PINN

Wang, Sifan, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert’s Guide to Training Physics-Informed Neural Networks, 2023.

An Expert's Guide to Training 
Physics-informed Neural Networks
Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

▪ non-dimensionalization

▪ Fourier feature

▪ causal/curriculum training

▪ loss weighting strategies

Problem implementation

▪ Maximizing hard constraints

▪ Mixed-PINN formulation

Optimization algorithm

▪ Adam + LBFGS

▪ Adaptative sampling

Network architecture

▪ Separable PINN

▪ Kolmogorov-Arnold Network
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Introduction to Separable-PINN

II – Improving the convergence of PINN

[1] Cho, Junwoo, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, et Eunbyung Park. 2023. « Separable Physics-Informed Neural Networks ». arXiv. https://doi.org/10.48550/arXiv.2306.15969.

Fig. 1: SPINN architecture for a 3D problem

Fig. 2: Illustrative example of factorizable-coordinates 
constraint required for SPINN sampling

➢ A different network for each dimension

➢ Low-rank tensor approximation

➢ Expressive enough

෤𝑢1
0 ⋯ ෤𝑢1

r

⋮ ⋮

⋮

𝑥1

෤𝑢2
0 ⋯ ෤𝑢2

r

⋮ ⋮

⋮

𝑥2

෤𝑢3
0 ⋯ ෤𝑢3

r

⋮ ⋮

⋮

𝑥3

𝑥

body-networks

element-wise product

low rank tensor 

representation
each dimension 

component

෤𝑢
(a) Non-factorizable (a) Factorizable

➢ Faster computation

➢ 𝑁𝑑 points for the price of 𝑁 × 𝑑

➢ Bring limitations in the geometry

෍

𝑖=0

𝑟

෤𝑢1
i ෤𝑢2

i ෤𝑢3
i

https://doi.org/10.48550/arXiv.2306.15969
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PINN for continuum mechanics : example from literature1

[1] Haghighat, Ehsan, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. “A Deep Learning Framework for Solution and Discovery in Solid Mechanics.” ArXiv:2003.02751 [Cs, Stat], May 6, 2020.

Domain and boundary condition : Exact solution :

Volumic forces :

Fig. 2 : Exact displacement and stress solution of the problem

Parameters :

𝜆 = 1
𝜇 = 0,5

II – Improving the convergence of PINN
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PINN vs SPINN on a continuum mechanics example

SPINN outperforms in both 

speed and accuracy

II – Improving the convergence of PINN

https://youtu.be/ar9sXmukCFY?si=sArxkA9NgqhyNJ3i
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Techniques from the literature

II – Improving the convergence of PINN

Wang, Sifan, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An Expert’s Guide to Training Physics-Informed Neural Networks, 2023.

An Expert's Guide to Training 
Physics-informed Neural Networks
Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

▪ non-dimensionalization

▪ Fourier feature

▪ causal/curriculum training

▪ loss weighting strategies

Problem implementation

▪ Maximizing hard constraints

▪ Mixed-PINN formulation

Optimization algorithm

▪ Adam + LBFGS

▪ Adaptative sampling

Network architecture

▪ Separable PINN

▪ Kolmogorov-Arnold Network
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Resources

III- PINN for inverse quantification of material parameters

Separable Physics-Informed Neural Networks for Robust Inverse 
Quantification in Solid Mechanics

Damien Bonnet-Eymard, Augustin Persoons, Matthias Faes, and David Moens

Presented at ISRERM 2024 conference - Available on ResearchGate

SPINN branch of DeepXDEwww.github.com/bonneted/ISRERM2024

Code and results are available online :

relies on
➢ bonneted/deepxde at SPINN (github.com)

➢ still under development  

https://github.com/bonneted/deepxde/tree/SPINN
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Inverse quantification from full field measurements

III- PINN for inverse quantification of material parameters

Digital Image Correlation

camera
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Inverse quantification from full field measurements

III- PINN for inverse quantification of material parameters

Digital Image Correlation

camera

image matching

Full field measurement

Inverse quantification :

• Virtual Field Method

• Finite Element Method 

Updating

• …

Material properties Use Physics Informed

Neural Networks as an 

alternative inverse method

Can struggle on complex 

geometry or material behavior
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PINNs for continuum mechanics : case study from literature1

[1] Haghighat, Ehsan, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. “A Deep Learning Framework for Solution and Discovery in Solid Mechanics.” ArXiv:2003.02751 [Cs, Stat], May 6, 2020.

Domain and boundary condition : Exact solution :

Volumic forces :

Fig. 2 : Exact displacement and stress solution of the problem

III- PINN for inverse quantification of material parameters

Parameters :

𝜆 = 1
𝜇 = 0,5

+ measurements

ground truth displacement

Find elasticity 

parameters
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Inverse quantification of elasticity parameters : SPINN

III- PINN for inverse quantification of material parameters

SPINN:

Converge directly in a few minutes

More realistic example ?

https://youtu.be/xoSPCDGkVNY
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Inverse quantification benchmark from the literature1

III- PINN for inverse quantification of material parameters

Compare with SPINN

[1] Martins, J.M.P., António Andrade-Campos, et Sandrine Thuillier. 2018. « Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements ». International Journal of Mechanical Sciences 145 (septembre): 330-45.

16 simulated measurements
Using FEM as the reference

Strain corrupted with noise
1𝜇𝜀 gaussian noise (≈10% of std.)
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Benchmark from the literature: SPINN results

III- PINN for inverse quantification of material parameters

SPINN 10x more accurate

Expected: regression model 

dealing with an unbiased noise

16 simulated measurements
Using FEM as the reference

Strain corrupted with noise
1𝜇𝜀 gaussian noise (≈10% of std.)

https://youtu.be/wFODdihrz60?si=zQv_1a6rELt0ROOD
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Resources

IV- PINN to propagate uncertainty

Physics-Informed Neural Networks to propagate random field 
properties of composite materials

D. Bonnet-Eymard, A. Persoons, P. Gavallas, M. GR Faes, G. Stefanou, D. Moens

Presented at USD 2024 conference - Available on ResearchGate

www.github.com/bonneted/USD2024

Code and results are available online :
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Polynomial Chaos Expansion (PC)

IV- PINN to propagate uncertainty

𝑌 ξ ≈ ෍

α∈𝒜

𝑦αΨα ξ

𝐌𝐨𝐝𝐞𝐥ξ = ξ1, 𝜉2 … 𝜉M 𝑌 ξ

random inputs output

𝒜⊂ℕ𝑀,
multi-indices that define 

the truncation

PCE coefficients to be found

multivariate polynomials of 

the random inputs

Resolution (determining 𝒚𝛂) :

• sampling

• 𝑦α determined using least squares, least angle…

Space dependent output : 𝒀 𝝃, 𝒙 ?

• discretization of the output (PCA…)

• Spatially dependant coefficients
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Space dependent Polynomial Chaos Expansion

IV- PINN to propagate uncertainty

𝑌 ξ, 𝑥 ≈ ෍

α∈𝒜

𝑦α 𝑥 Ψα ξ

𝐌𝐨𝐝𝐞𝐥ξ = ξ1, 𝜉2 … 𝜉M 𝑌 ξ

random inputs output

𝒜⊂ℕ𝑀,
multi-indices that define 

the truncation

Space dependent PCE coefficients 

to be found

multivariate polynomials of 

the random inputs

Resolution (determining 𝒚𝛂) :

• sampling

• 𝑦α determined using least squares, least angle…

Space dependent output : 𝒀 𝝃, 𝒙 ?

• discretization of the output (PCA…)

• Spatially dependant coefficients

➢ Use a Neural Network as the approximator :

𝑦α 𝑥 = 𝑁𝑁(𝑥) PINN-PC
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PINN-PC1

IV- PINN to propagate uncertainty

𝑦𝛼
⋮ ⋮

⋮

𝑥

Neural Network
Ψ𝛼(𝜉)

PCE basis

෍

𝛼𝜖𝐴

 𝑦𝛼(𝑥)Ψ𝛼(𝜉)

PCE approximation

෩𝒀

𝜕

𝜕𝑥
𝐹𝜆[෩𝒀](𝑥) − 𝑓(𝑥)

PDE loss

𝐵𝜆[෩𝒀](𝑥) − 𝑔(𝑥)

BC/IC loss

Automatic differentiation

backpropagation
+

[1] Zhang, Dongkun, Lu Lu, Ling Guo, et George Em Karniadakis. « Quantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems ». Journal of Computational Physics 397 (15 novembre 2019): 108850. https://doi.org/10.1016/j.jcp.2019.07.048.

Several coefficients to predict :

• grouping them by their polynomial degree

• using a separate neural network for each group

Increase the computational cost

by a factor N = the number of samples 

Fig. 1 :  Schematic representation of the PINN-PC framework.

https://doi.org/10.1016/j.jcp.2019.07.048
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Poisson equation : reference solution

IV- PINN to propagate uncertainty

Problem setup : Finite difference solution :

Fig. 2:  Mean and standard deviation of the solution computed 

using 106 Monte Carlo simulations.

Poisson equation

Forcing term
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Poisson equation : random field discretization

IV- PINN to propagate uncertainty

Discretization of 𝒇 𝒙, 𝝎 :

𝑓 𝑥 = 𝑓0 𝑥 + σ𝑛=1
∞ λ𝑛 ϕ𝑛 𝑥 ξ𝑛

On a discrete space :

𝐶𝑜𝑣 𝑥, 𝑥′ = 𝑀𝑐𝑜𝑣

K-L Spectral decomposition of 𝑀𝑐𝑜𝑣

Karhunen–Loève expansion

Forcing term

Fig. 3:  Eigendecomposition of the covariance matrix to construct the 

K-L expansion.

Keep 6 order to have 99% explained variance

• GP represented by 6 variables : (𝜉1, 𝜉2 … 𝜉6)

• 1 order PCE : only 6 polynomials Ψi ξ = 𝜉𝑖



• 1000 samples of f

• 13 training points in [-1, 1]

• Adam (20000 epochs, lr = 1e-3)

Training :
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Poisson equation : implementation

IV- PINN to propagate uncertainty

Fig. 5: Mean and standard deviation of the solution

Fig. 4: approximated PCE coefficients

Neural Network

• MeanNN: [1, 4, 4, 1], to approximate 𝑢0(𝑥)

• CoeffNN: [1, 36, 36, 36, 36, 6], to approximate 𝑦𝛼(𝑥)

• Tanh activation function
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PINN: a powerful tool that is becoming increasingly mature

Conclusion

▪ 𝑳𝑷𝑫𝑬 : PDE calculated through automatic differentiation

▪ 𝑳𝑩𝑪/𝑰𝑪 : Residual between PINN approximation and BCs values

▪ 𝑳𝑼 ∶ Residual between PINN approximation and measurements

loss minimized compliance to the PDE, BCs and data

Idea : use an artificial neural network to approximate the 

solution of a boundary value problem defined by a partial 

differential equation (PDE) and boundary conditions (BCs)

The training (i.e., finding the network parameters that minimize the 

loss) rely on stochastic optimization and can struggle to converge

Physics-Informed loss function : 𝐿𝑡𝑜𝑡𝑎𝑙= 𝐿𝑈 + 𝐿𝐵𝐶/𝐼𝐶 + 𝐿𝑃𝐷𝐸

Techniques to improve convergence

▪ Hard constraints

▪ Mixed formulation

▪ Separable-PINN

▪ Adaptative sampling

Possible applications

▪ Inverse quantification

▪ Uncertainty propagation
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