







# **Confluences Mathématiques**

21 November 2024, Paris, France

# A practical introduction to Physics-Informed Neural Networks (PINNs)



Damien Bonnet-Eymard





### About me



Damien Bonnet-Eymard
PhD student @ KU Leuven
ESR @Greydient

damien.bonnet-eymard@kuleuven.be

Physics-Informed neural networks for continuum mechanics applications

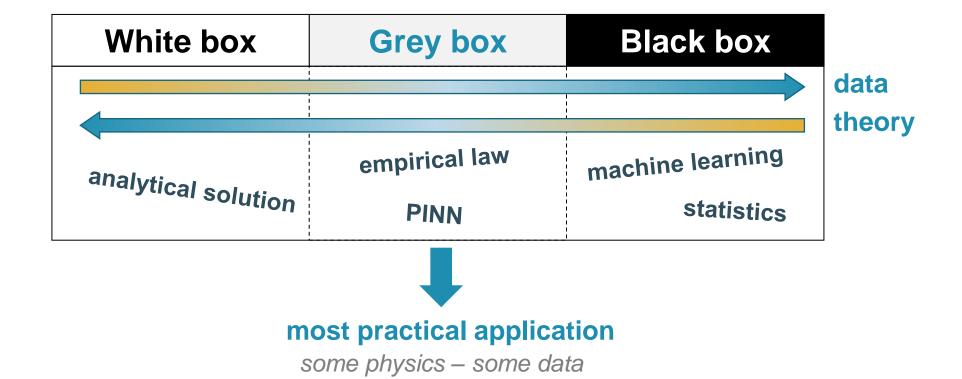


Marie Curie ITN project founded by the European commission





# Greydient project: developing the grey-box methodology





- I. Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters
- IV. PINN to propagate uncertainty



# I. Introduction to Physics-Informed Neural Networks

II. Improving the convergence of PINN

III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty



# Brief history of Physics-Informed Neural Networks

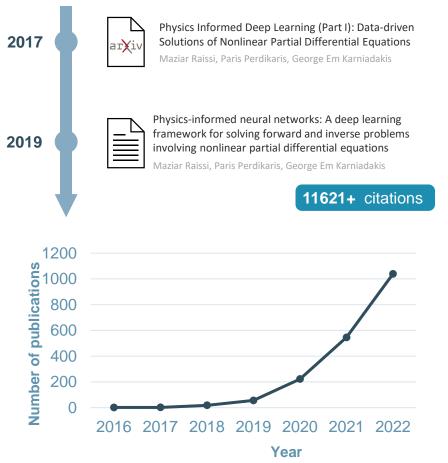


Fig.1: Publication with title/abstract containing "Physics-Informed Neural Networks" on Dimensions (www.dimensions.ai)

# Why **PINNs** are so popular?

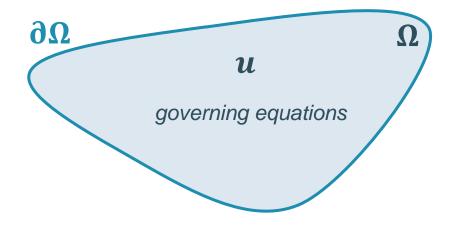
- good at extrapolation/inverse problem
- benefits from late AI research
- · easily applicable to any topic





# Motivation: solving a boundary value problem

# Boundary Value Problem (BVP):



 $BC:\partial\Omega:\,f_{BC}(u)=0$ 

 $IC: u(t=0)=u_0$ 

### Theory:

If well posed: (BC well defined)

**Existence** and **uniqueness** of  $u^1$ 

# The Ritz (Galerkin) method:

Discretization for numerical resolution



Physics-Informed Neural Networks

[1] « Picard–Lindelöf Theorem ». 2022. In Wikipedia.



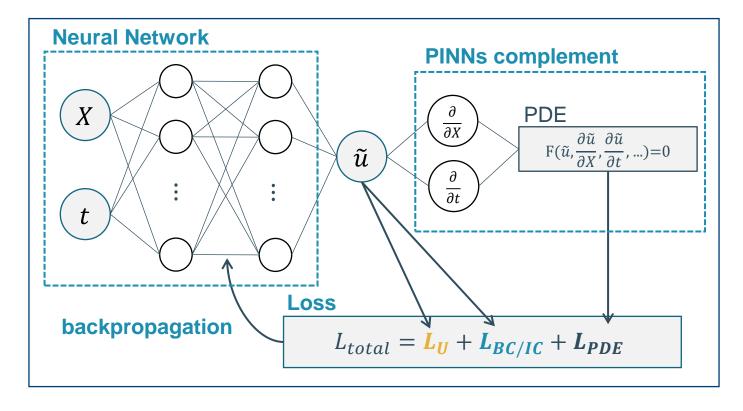
# Comparing PINN and FEM: choosing the trial function space

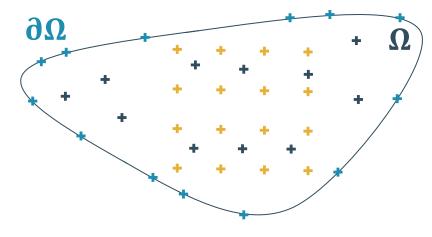
|               |                           | Finite Element Method                      | Physics-Informed Neural<br>Network                     |
|---------------|---------------------------|--------------------------------------------|--------------------------------------------------------|
|               | Discretization            | Mesh                                       | Neural network architecture                            |
|               | Trial/basis function      | Piece-wise polynomials                     | Artificial neural network                              |
|               | Parameters                | Mesh nodal values                          | Network weight and biases                              |
|               | Resolution                | Matrix inversion                           | Stochastic optimization                                |
|               | Hyper-parameter           | Mesh (geometry, element)                   | Network, optimizer, implementation                     |
|               | Solution*                 | Unique                                     | Non-unique<br>(optimization and generalization error)  |
| Pros/<br>Cons | Boundary conditions       | All are needed (inversible matrix)         | Can be missing                                         |
|               | Incorporating measurement | Can be expensive (need iterative updating) | Seamless during training (adding a residual loss term) |

Hyper-parameter are crucial for the convergence



<sup>\*</sup>of a well-posed problem for a given mesh/network

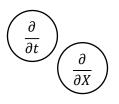




$$lacktriangledown$$
 *PDE* evaluation :  $L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...) \right\|$ 

$$lacktriangledown$$
 BC value :  $L_{BC/IC} = \sum_{X \in \partial \Omega} \|N(X) - u_{BC}(X)\|$ 

$$lacktriangledown$$
 Ground truth data :  $L_U = \sum_{X \in \Omega} \|N(X) - u\|$ 





performed using Automatic Differentiation

Applying chain rule throw the network



#### Loss

$$L_{total} = L_{U} + L_{BC/IC} + L_{PDE}$$

### Imposing boundary condition:

#### **SOFT**

Adding a loss term:

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

penalize non-respect of boundary conditions

#### **HARD**

Applying a mask function on the output:

$$u = F_{mask}[N(X)]$$

directly enforce boundary conditions



#### Loss

$$L_{total} = L_{U} + L_{BC/IC} + L_{PDE}$$

### Imposing boundary condition:

#### SOFT

Adding a loss term

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

penalize non-respect of boundary conditions

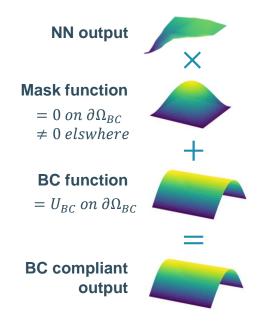
#### **HARD**

Applying a mask function on the output:

$$u = F_{mask}[N(X)]$$
directly enforce boundary conditions

#### Hard BC example:

$$u_{x=0} = u_{x=1} = 0$$
$$u_{y=0} = u_{y=1} = \cos(2\pi x)$$





#### Loss

$$L_{total} = L_{U} + L_{BC/IC} + L_{PDE}$$

### Imposing boundary condition:

#### **SOFT**

Adding a loss term :

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

penalize non-respect of boundary conditions

#### **HARD**

Applying a mask function on the output:

$$u = F_{mask}[N(X)]$$

directly enforce boundary conditions

#### Relaxed constraint

General and seamless to implement

Multi-term optimization (make convergence harder)

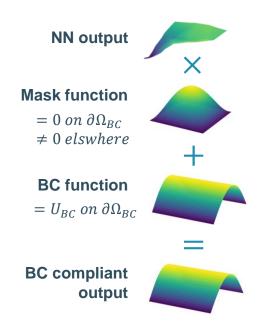
#### **Exact imposition**

Specific to every problem (generalization possible)

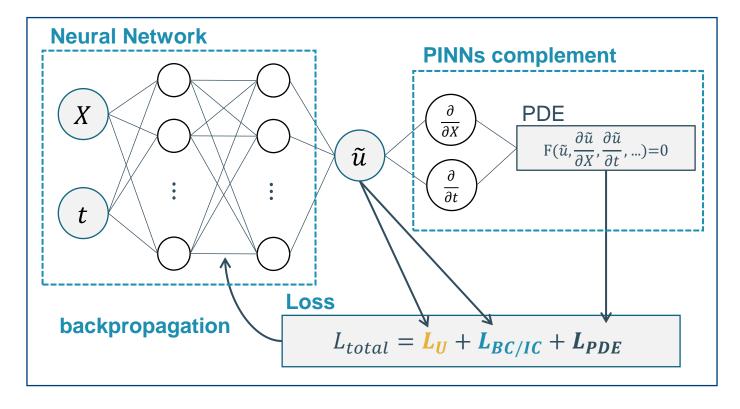
Better convergence

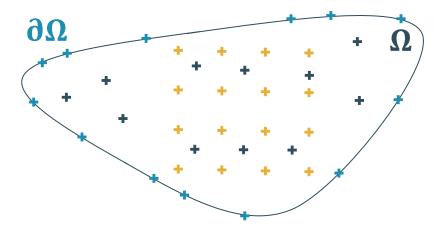
#### **Hard BC example:**

$$u_{x=0} = u_{x=1} = 0$$
$$u_{y=0} = u_{y=1} = \cos(2\pi x)$$





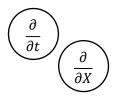




$$lacktriangledown$$
 *PDE* evaluation :  $L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...) \right\|$ 

$$lacktriangledown$$
 BC value :  $L_{BC/IC} = \sum_{X \in \partial \Omega} \lVert N(X) - u_{BC}(X) 
Vert$ 

$$lacktriangledown$$
 Ground truth data :  $L_U = \sum_{X \in \Omega} \|N(X) - u\|$ 

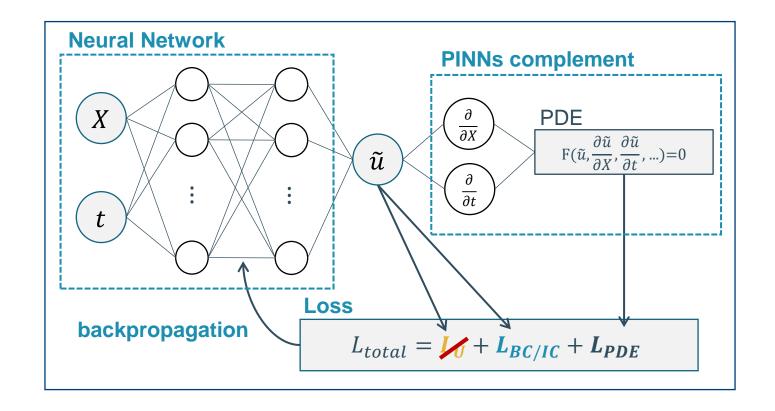




performed using **A**utomatic **D**ifferentiation

Applying chain rule throw the network





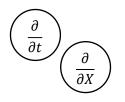
$$L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...) \right\|$$

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

$$L_U = \sum_{X \in \Omega} \|N(X) - u\|$$

### Forward problem:

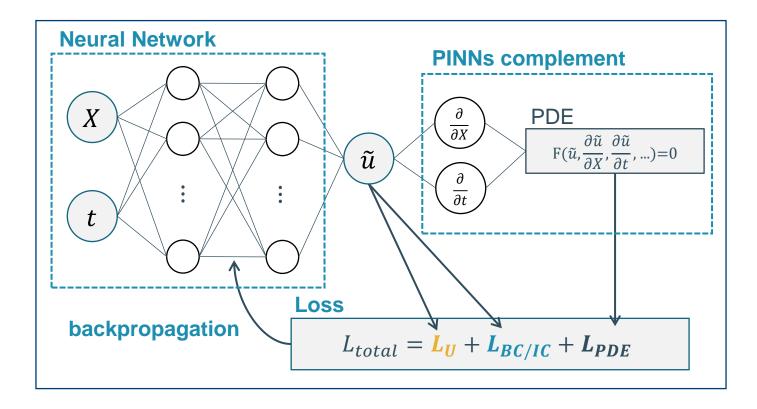
no need for labeled data



performed using Automatic Differentiation

Applying chain rule throw the network





$$L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...) \right\|$$

$$L_{BC/IC} = \sum_{X \in \partial \Omega} ||N(X) - u_{BC}(X)||$$

$$L_{U} = \sum_{X \in \Omega} ||N(X) - u||$$

#### Forward problem:

no need for labeled data

### **Inverse problem:**

Determining PDE parameters

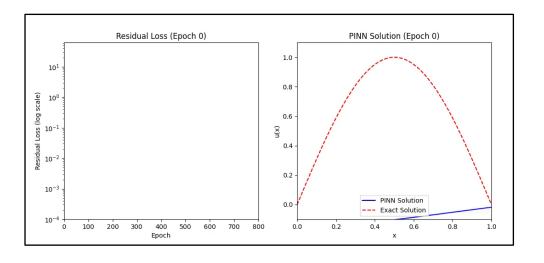
$$F_{p_i}(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...)$$
  $p_i$ : model parameters



# PINN to solve 1D Poisson equation

$$\begin{cases} -\frac{\partial^2 u}{\partial x^2} = \pi^2 \sin(\pi x), & x \in [0,1] \\ u(0) = u(1) = 0 \end{cases}$$

Exact solution :  $u(x) = \sin(\pi x)$ 



#### **PyTorch**

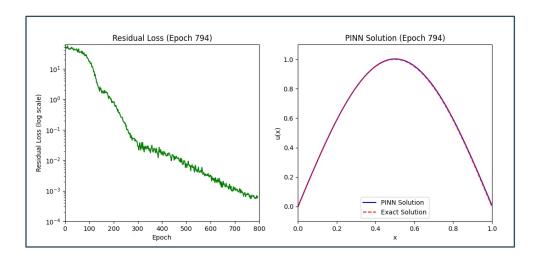
```
import torch
import torch.nn as nn
 import torch.optim as optim
class PINN(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(1, 20), nn.Tanh(),
            nn.Linear(20, 20), nn.Tanh(),
            nn.Linear(20, 1)
    def forward(self, x):
        return self.net(x)
def poisson_residual(x, model):
    u = model(x)
    u_x = torch.autograd.grad(u, x, torch.ones_like(u), create_graph=True)[0]
    u_xx = torch.autograd.grad(u_x, x, torch.ones_like(u_x), create_graph=True)[0]
    f = torch.pi**2*torch.sin(torch.pi * x)
    return (-u_xx - f).pow(2).mean() # Residual loss
def boundary_loss(model):
    return model(torch.tensor([[0.0]]))**2 + model(torch.tensor([[1.0]]))**2 # Enforce u(0)=u(1)=0
model = PINN()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(1000):
    x = torch.rand(100, 1, requires_grad=True)
    loss = poisson_residual(x, model) + boundary_loss(model)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if epoch % 100 = 0:
        print(f"Epoch {epoch}, Loss: {loss.item()}")
```



# PINN to solve 1D Poisson equation

$$\begin{cases} -\frac{\partial^2 u}{\partial x^2} = \pi^2 \sin(\pi x), & x \in [0,1] \\ u(0) = u(1) = 0 \end{cases}$$

Exact solution :  $u(x) = \sin(\pi x)$ 



#### DeepXDE

```
. .
import deepxde as dde
import torch
def pde(x, y):
    dy_x = dde.grad.hessian(y, x)
    return -dy_xx - np.pi ** 2 * torch.sin(np.pi * x)
def boundary(x, on_boundary):
    return on_boundary
def func(x):
    return np.sin(np.pi * x)
geom = dde.geometry.Interval(-1, 1)
bc = dde.icbc.DirichletBC(geom, func, boundary)
data = dde.data.PDE(geom, pde, bc, 16, 2, solution=func, num_test=100)
layer_size = [1] + [50] * 3 + [1]
activation = "tanh"
initializer = "Glorot uniform"
net = dde.nn.FNN(layer_size, activation, initializer)
model = dde.Model(data, net)
model.compile("adam", lr=0.001, metrics=["l2 relative error"])
losshistory, train_state = model.train(iterations=10000)
```

and the Second Section in Section 2019



### PINN software



- DeepXDE¹
- SciANN
- NeuroDiffEq
- IDRLnet
- ...



- NeuralPDE.jl



- Modulus



### DeepXDE

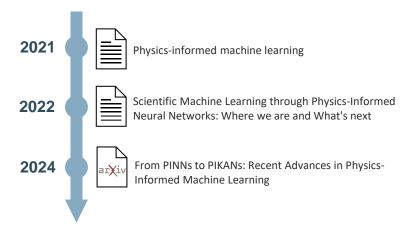
A library for scientific machine learning and physics-informed learning

- Multi-backend : Tensorflow, Pytorch, JAX...
- Simplified implementation, lot of features
- Very active community, latest research implemented
- Well documented with a lot of examples



### Literature review of PINN

#### **Review papers**



### **Github repository**



1000+ papers by category

- Application papers Mechanics, Chemistry, Robotics, ...
- **Network architecture** Convolution, Graph Network, **Separable-PINN**, KAN...
- **New implementation** Variational form, Mixed PINN...
- **Extension** Uncertainty Quantification...
- Improving training Sampling strategy, Fourier features, Loss balance...

Convergence issues

<sup>[2]</sup> Cuomo, Salvatore, Vincenzo Schiano di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and Francesco Piccialli. "Scientific Machine Learning through Physics-Informed Neural Networks: Where We Are and What's Next." arXiv, June 7, 2022. https://doi.org/10.48550/arXiv.2201.05624 [3] Toscano, Juan Diego, Vivek Oommen, Alan John Varghese, Zongren Zou, Nazanin Ahmadi Daryakenari, Chenxi Wu, and George Em Karniadakis. "From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning." arXiv, October 22, 2024. https://doi.org/10.48550/arXiv.2410.13228.



<sup>[1]</sup> Karniadakis, George Em, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. "Physics-Informed Machine Learning." Nature Reviews Physics 3, no. 6 (June 2021): 422-40. https://doi.org/10.1038/s42254-021-00314-5

# I. Introduction to Physics-Informed Neural Networks

II. Improving the convergence of PINN

III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty



I. Introduction to Physics-Informed Neural Networks

# II. Improving the convergence of PINN

III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty



# Techniques from the literature



An Expert's Guide to Training
Physics-informed Neural Networks

Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

Non-dimensionalization

Fourier features

Causal/curriculum training

Loss weighting strategies

### **Problem implementation**

- Maximizing hard constraints
- Mixed-PINN formulation

#### **Network architecture**

- Separable PINN
- Kolmogorov-Arnold Network

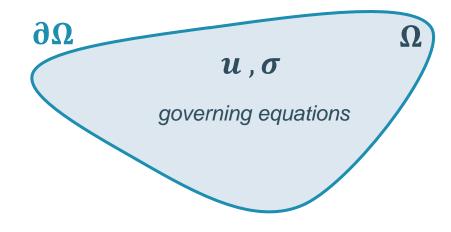
### **Optimization algorithm**

- Adam + LBFGS
- Adaptative sampling



# PINNs framework for continuum mechanics

### Boundary Value Problem (BVP):



### **Boundary conditions:**

$$\partial \Omega_{
m u}: \ u = u_{BC} \qquad \qquad ext{in displacement} \ \partial \Omega_f: \ \sigma. \ ec{n} = ec{F}_{BC} \qquad \qquad ext{in stress}$$

#### Fields:

| u | displacement  |                               |
|---|---------------|-------------------------------|
| ε | strain tensor | Which output for the network? |
| σ | stress tensor |                               |

### **Equations:**

$$egin{aligned} arepsilon_{ij} &= rac{1}{2} \left( u_{i,j} + u_{j,i} 
ight) & ext{small deformation} \ \hline \sigma_{ij} &= f(arepsilon_{ij}) & ext{material law} \ \hline \sigma_{ij,j} + f_i &= 0 & ext{momentum balance} \end{aligned}$$



# PINNs framework for continuum mechanics



Which output for the network?

 $u? \sigma? both?$ 

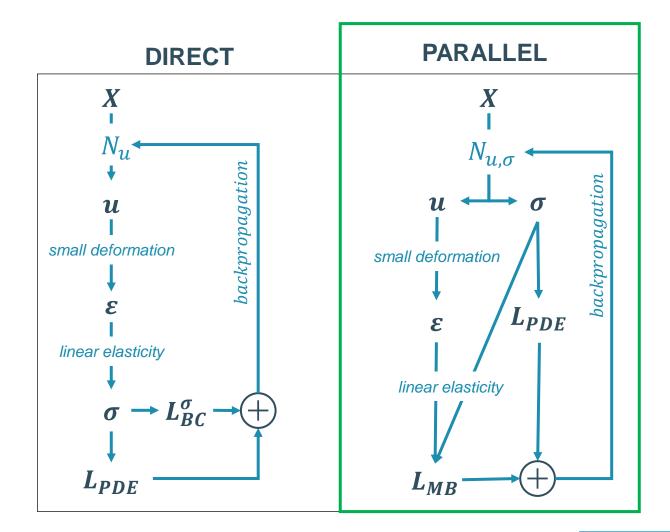
#### **Goal**: maximise the number of hard constraint



Hard boundary condition only on the output of a neural network

|               | DIRECT | PARALLEL |
|---------------|--------|----------|
| $BC_u$        | Hard   | Hard     |
| $BC_{\sigma}$ | Soft   | Hard     |
| Material law  | Hard   | Soft     |

+ limit the order of the derivatives





# Techniques from the literature



- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

### **Problem implementation**

- Maximizing hard constraints
- Mixed-PINN formulation

#### **Network architecture**

- Separable PINN
- Kolmogorov-Arnold Network

### **Optimization algorithm**

- Adam + LBFGS
- Adaptative sampling



# Techniques from the literature



- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

### **Problem implementation**

- Maximizing hard constraints
- Mixed-PINN formulation

#### **Network architecture**

- Separable PINN
- Kolmogorov-Arnold Network

### **Optimization algorithm**

- Adam + LBFGS
- Adaptative sampling



# Introduction to Separable-PINN

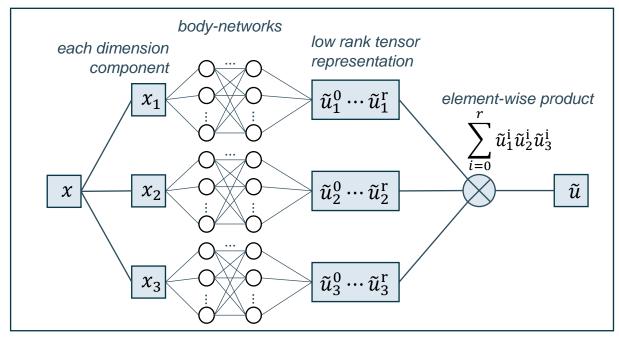


Fig. 1: SPINN architecture for a 3D problem

- > A different network for each dimension
- Low-rank tensor approximation
- > Expressive enough

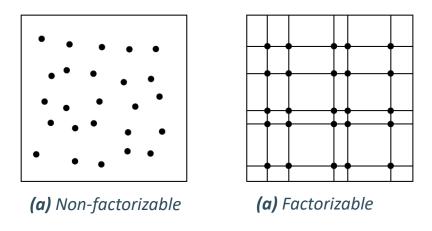


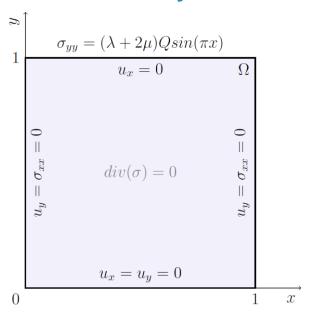
Fig. 2: Illustrative example of factorizable-coordinates constraint required for SPINN sampling

- > Faster computation
- $ightharpoonup N^d$  points for the price of  $N \times d$
- Bring limitations in the geometry



# PINN for continuum mechanics : example from literature<sup>1</sup>

#### **Domain and boundary condition:**



#### **Volumic forces:**

$$\begin{split} f_x &= \lambda \left[ 4\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Q y^3 \right] \\ &+ \mu \left[ 9\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Q y^3 \right] \\ f_y &= \lambda \left[ -3\sin(\pi x) Q y^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) \right] \\ &+ \mu \left[ -6\sin(\pi x) Q y^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) + \pi^2 \sin(\pi x) Q y^4 / 4 \right]. \end{split}$$

#### **Exact solution:**

# $u_x(x,y) = \cos(2\pi x)\sin(\pi y),$ $u_y(x,y) = \sin(\pi x)Qy^4/4.$

#### **Parameters:**

$$\lambda = 1$$

$$\mu = 0.5$$

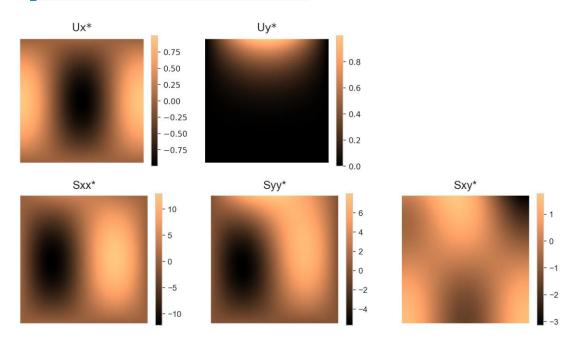
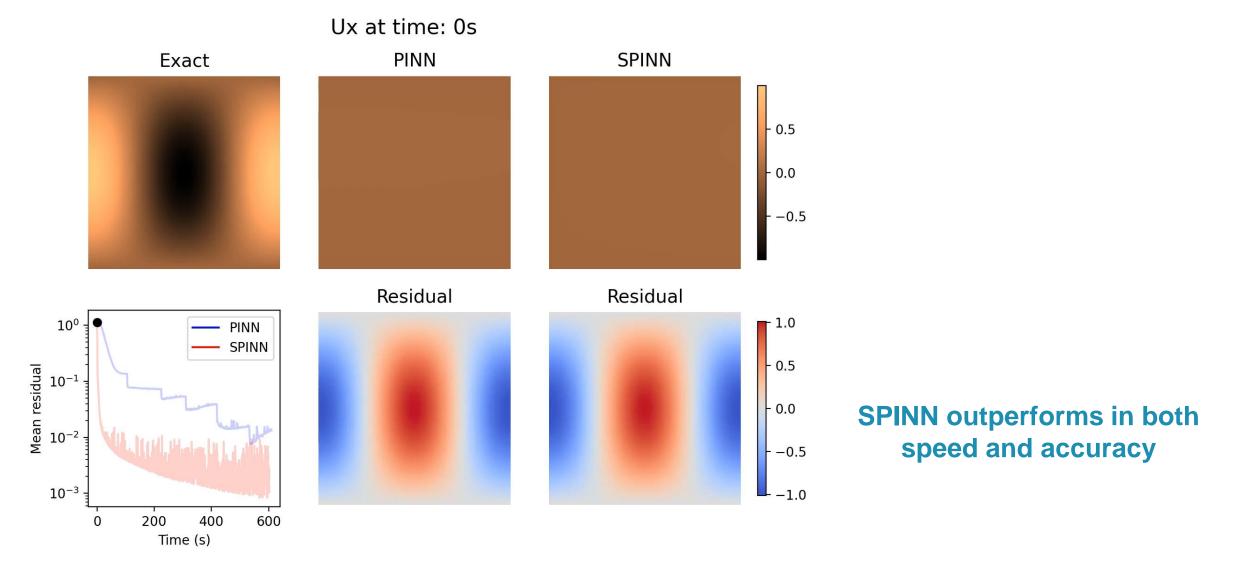


Fig. 2: Exact displacement and stress solution of the problem



# PINN vs SPINN on a continuum mechanics example





# Techniques from the literature



- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

### **Problem implementation**

- Maximizing hard constraints
- Mixed-PINN formulation

#### **Network architecture**

- Separable PINN
- Kolmogorov-Arnold Network

### **Optimization algorithm**

- Adam + LBFGS
- Adaptative sampling



# Techniques from the literature



- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

### **Problem implementation**

- Maximizing hard constraints
- Mixed-PINN formulation

#### **Network architecture**

- Separable PINN
- Kolmogorov-Arnold Network

### **Optimization algorithm**

- Adam + LBFGS
- Adaptative sampling



Introduction to Physics-Informed Neural Networks

# II. Improving the convergence of PINN

III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty

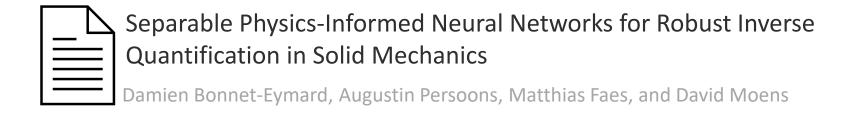


- I. Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty



### Resources



Presented at ISRERM 2024 conference - Available on ResearchGate

#### Code and results are available online:



www.github.com/bonneted/ISRERM2024





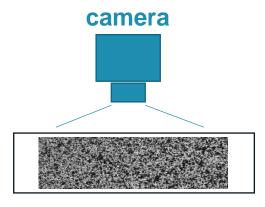
SPINN branch of DeepXDE

- bonneted/deepxde at SPINN (github.com)
- > still under development



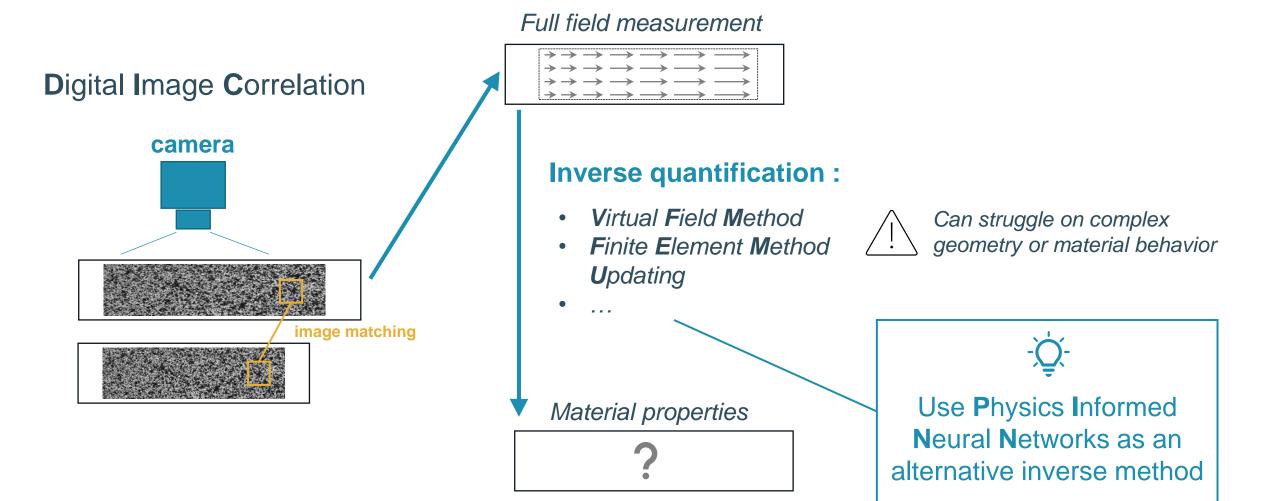
# Inverse quantification from full field measurements

# **D**igital Image Correlation





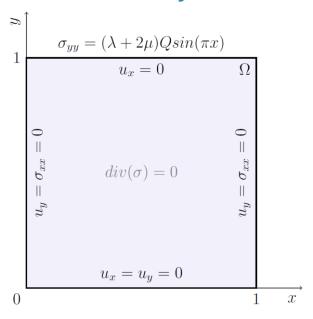
# Inverse quantification from full field measurements





## PINNs for continuum mechanics: case study from literature<sup>1</sup>

## **Domain and boundary condition:**



#### **Volumic forces:**

$$f_x = \lambda \left[ 4\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Q y^3 \right]$$

$$+ \mu \left[ 9\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Q y^3 \right]$$

$$f_y = \lambda \left[ -3\sin(\pi x) Q y^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) \right]$$

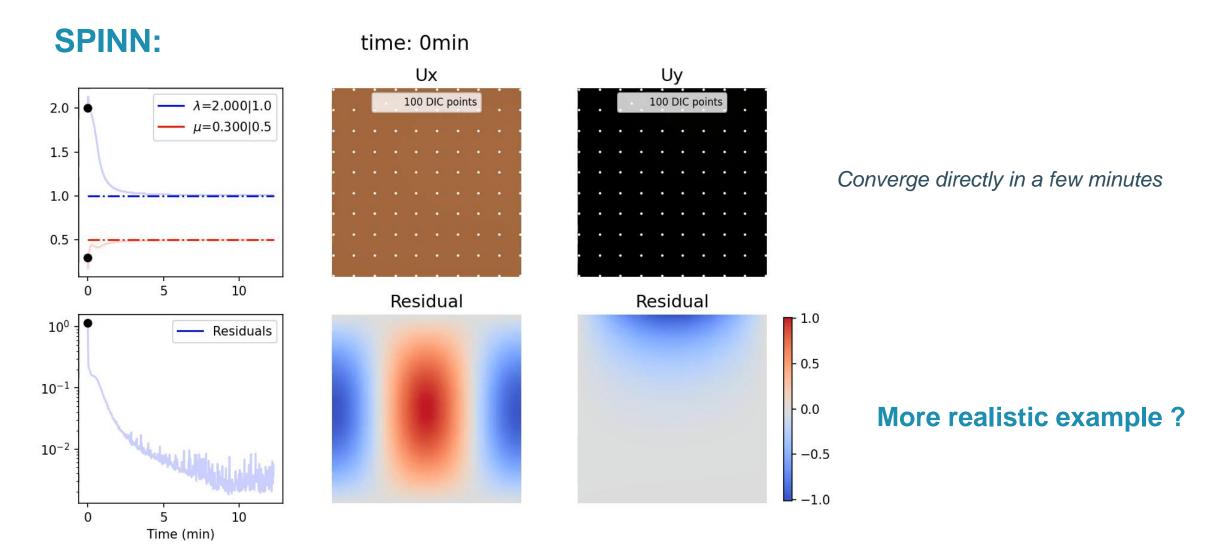
$$+ \mu \left[ -6\sin(\pi x) Q y^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) + \pi^2 \sin(\pi x) Q y^4 / 4 \right] .$$

## **Parameters: Exact solution:** $u_x(x,y) = \cos(2\pi x)\sin(\pi y),$ $u_y(x,y) = \sin(\pi x)Qy^4/4.$ $\mu = 0.5$ **Find elasticity** parameters + measurements ground truth displacement -0.50-0.75Syy\* Sxx\*

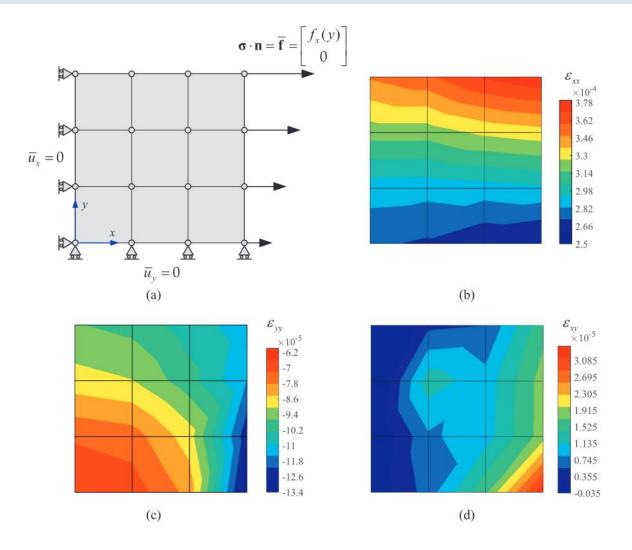
Fig. 2: Exact displacement and stress solution of the problem



## Inverse quantification of elasticity parameters : SPINN



## Inverse quantification benchmark from the literature<sup>1</sup>



#### 16 simulated measurements

Using FEM as the reference

## Strain corrupted with noise

1με gaussian noise (≈ 10% of std.)

|           | E (GPa) | ν      | E - Error(%) | $\nu$ - Error(%) |
|-----------|---------|--------|--------------|------------------|
| Reference | 210.00  | 0.3000 |              |                  |
| FEMU      | 203.90  | 0.2706 | 2.90         | 9.789            |
| CEGM      | 204.55  | 0.2728 | 2.59         | 9.058            |
| EGM       | 195.10  | 0.2356 | 7.09         | 21.436           |
| VFM       | 205.14  | 0.2753 | 2.31         | 8.207            |

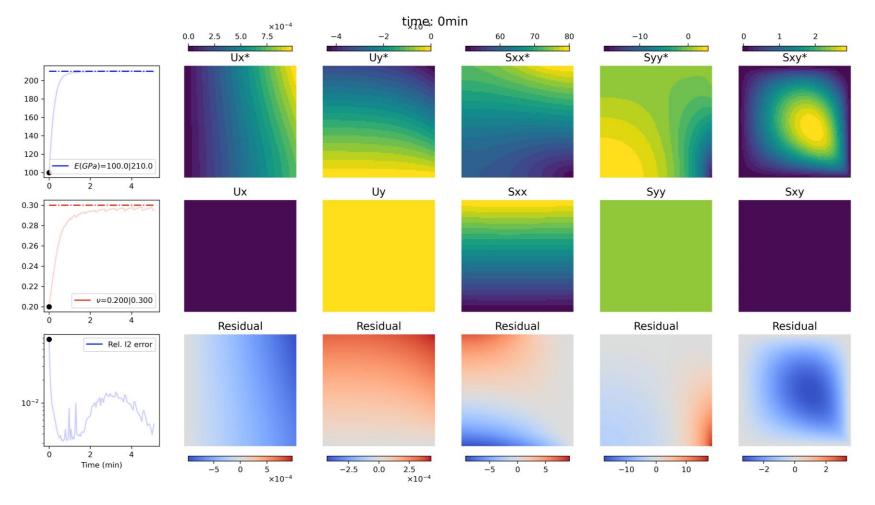


**Compare with SPINN** 

[1] Martins, J.M.P., António Andrade-Campos, et Sandrine Thuillier. 2018. « Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements ». International Journal of Mechanical Sciences 145 (septembre): 330-45.



## Benchmark from the literature: SPINN results



## **16 simulated measurements** *Using FEM as the reference*

Strain corrupted with noise

1με gaussian noise (≈ 10% of std.)

|           | E (GPa) | ν      | E - Error(%) | $\nu$ - Error(%) |
|-----------|---------|--------|--------------|------------------|
| Reference | 210.00  | 0.3000 |              |                  |
| FEMU      | 203.90  | 0.2706 | 2.90         | 9.789            |
| CEGM      | 204.55  | 0.2728 | 2.59         | 9.058            |
| EGM       | 195.10  | 0.2356 | 7.09         | 21.436           |
| VFM       | 205.14  | 0.2753 | 2.31         | 8.207            |
| SPINN     | 209.5   | 0.2952 | 0.24         | 1.667            |



#### **SPINN 10x more accurate**

**Expected:** regression model dealing with an unbiased noise



- Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters

IV. PINN to propagate uncertainty



- Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters
- IV. PINN to propagate uncertainty



## Resources



Physics-Informed Neural Networks to propagate random field properties of composite materials

D. Bonnet-Eymard, A. Persoons, P. Gavallas, M. GR Faes, G. Stefanou, D. Moens

Presented at USD 2024 conference - Available on ResearchGate

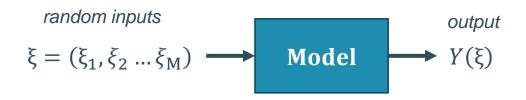
### Code and results are available online:

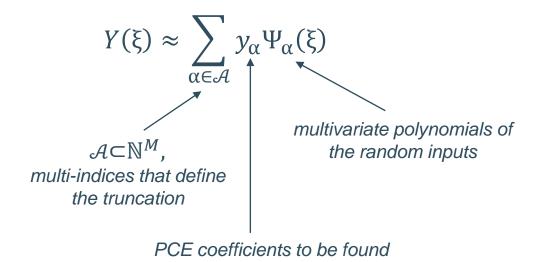


www.github.com/bonneted/USD2024



## Polynomial Chaos Expansion (PC)





## Resolution (determining $y_{\alpha}$ ):

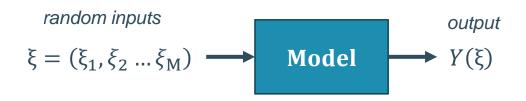
- sampling
- $y_{\alpha}$  determined using least squares, least angle...

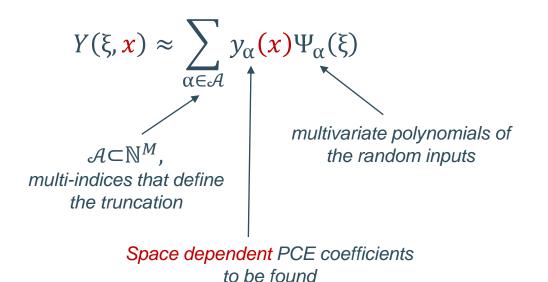
## Space dependent output : $Y(\xi, x)$ ?

- discretization of the output (PCA...)
- Spatially dependant coefficients



## Space dependent Polynomial Chaos Expansion





## Resolution (determining $y_{\alpha}$ ):

- sampling
- $y_{\alpha}$  determined using least squares, least angle...

## Space dependent output : $Y(\xi, x)$ ?

- discretization of the output (PCA...)
- Spatially dependant coefficients
- Use a Neural Network as the approximator :

$$y_{\alpha}(x) = NN(x)$$
 PINN-PC



## PINN-PC<sup>1</sup>

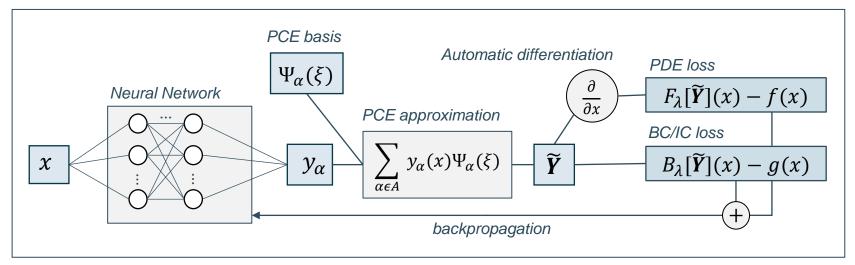


Fig. 1: Schematic representation of the PINN-PC framework.

## **Several coefficients to predict:**

- grouping them by their polynomial degree
- using a separate neural network for each group



## Increase the computational cost

by a factor N = the number of samples



## Poisson equation: reference solution

## **Problem setup:**

#### Poisson equation

$$-rac{\mathrm{d}^2}{\mathrm{d}x^2}u=f(x;\omega),\quad x\in[-1,1] ext{ and } \omega\in\Omega,$$
  $u(-1)=u(1)=0.$ 

#### Forcing term

$$f(x;\omega) \sim \mathcal{GP}(f_0(x), \text{Cov}(x,x'))$$

$$f_0(x) = 10\sin(\pi x)$$

$$\operatorname{Cov}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{l_c^2}\right),$$

### Finite difference solution:

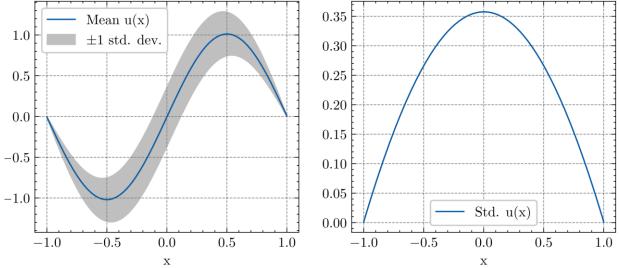


Fig. 2: Mean and standard deviation of the solution computed using 10<sup>6</sup> Monte Carlo simulations.



## Poisson equation: random field discretization

## Discretization of $f(x, \omega)$ :

#### Forcing term

$$f(x;\omega) \sim \mathcal{GP}(f_0(x), \mathrm{Cov}(x,x'))$$

$$f_0(x) = 10\sin(\pi x)$$

$$\operatorname{Cov}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{l_c^2}\right),$$

### Karhunen–Loève expansion

$$f(x) = f_0(x) + \sum_{n=1}^{\infty} \sqrt{\lambda_n} \, \phi_n(x) \, \xi_n$$

#### On a discrete space :

$$Cov(x, x') = Mcov$$

**K-L** ↔ Spectral decomposition **of** *Mcov* 

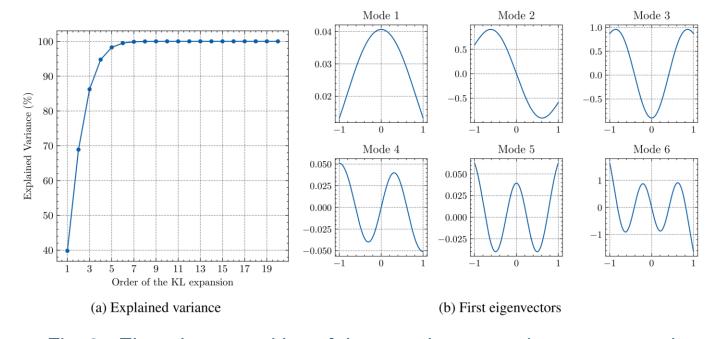


Fig. 3: Eigendecomposition of the covariance matrix to construct the K-L expansion.



## Keep 6 order to have 99% explained variance

- *GP* represented by 6 variables :  $(\xi_1, \xi_2 ... \xi_6)$
- 1 order PCE : only 6 polynomials  $\Psi_i(\xi) = \xi_i$



## Poisson equation: implementation

### **Neural Network**

- MeanNN: [1, 4, 4, 1], to approximate  $u_0(x)$
- CoeffNN: [1, 36, 36, 36, 36, 6], to approximate  $y_{\alpha}(x)$
- Tanh activation function

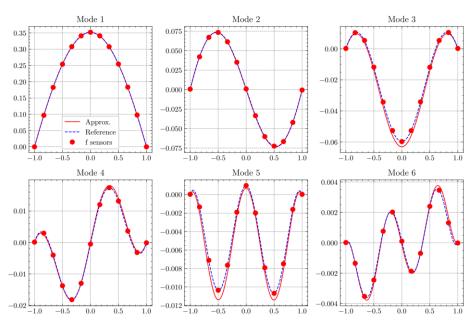


Fig. 4: approximated PCE coefficients

## **Training:**

- 1000 samples of f
- 13 training points in [-1, 1]
- Adam (20000 epochs, Ir = 1e-3)

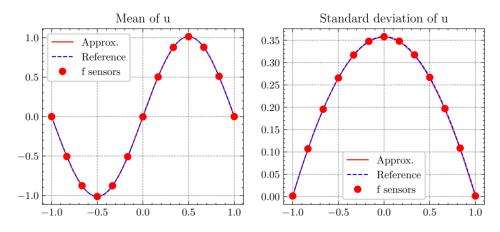


Fig. 5: Mean and standard deviation of the solution



- Introduction to Physics-Informed Neural Networks
- II. Improving the convergence of PINN
- III. PINN for inverse quantification of material parameters
- IV. PINN to propagate uncertainty



## Conclusion



## PINN: a powerful tool that is becoming increasingly mature



**Idea**: use an **artificial neural network** to approximate the solution of a **boundary value problem** defined by a partial differential equation (**PDE**) and boundary conditions (**BCs**)

Physics-Informed loss function :  $L_{total} = L_U + L_{BC/IC} + L_{PDE}$ 

- L<sub>PDE</sub>: PDE calculated through automatic differentiation
- $L_{BC/IC}$ : Residual between PINN approximation and BCs values
- $L_{II}$ : Residual between PINN approximation and measurements

loss minimized



compliance to the PDE, BCs and data



The training (i.e., finding the network parameters that minimize the loss) rely on stochastic optimization and can struggle to converge

#### **Techniques to improve convergence**

- Hard constraints
- Mixed formulation
- Separable-PINN
- Adaptative sampling

#### Possible applications

- Inverse quantification
- Uncertainty propagation





Damien Bonnet-Eymard
PhD student at KU Leuven
damien.bonnet-eymard@kuleuven.be



The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 955393.



# GREYDIENT project Marie Sklodowska-Curie Actions www.greydient.eu

