

Confluences Mathématiques

21 November 2024, Paris, France

A practical introduction to Physics-Informed Neural Networks (PINNs)

Damien Bonnet-Eymard

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 955393.

Introduction

About me

Damien Bonnet-Eymard PhD student @ KU Leuven

ESR @Greydient

damien.bonnet-eymard@kuleuven.be

Physics-Informed neural networks for continuum mechanics applications

Marie Curie ITN project founded by the European commission

Introduction

Greydient project : developing the grey-box methodology

- **I. Introduction to Physics-Informed Neural Networks**
- **II. Improving the convergence of PINN**
- **III. PINN for inverse quantification of material parameters**
- **IV. PINN to propagate uncertainty**

I. Introduction to Physics-Informed Neural Networks

KU LEUVEI

Brief history of **P**hysics-**I**nformed **N**eural **N**etworks

Why **PINNs** are so popular ?

- good at extrapolation/inverse problem
- benefits from late AI research
- easily applicable to any topic

Convergence issues

Motivation: solving a boundary value problem

Boundary **V**alue **P**roblem (**BVP**)**:**

Theory :

If well posed : *(BC well defined)*

Existence and **uniqueness** of u^1

The Ritz (Galerkin) method :

Discretization for numerical resolution

- **F**inite **E**lement **M**ethod
- **P**hysics-**I**nformed **N**eural **N**etworks

Comparing PINN and FEM : choosing the trial function space

*****of a well-posed problem for a given mesh/network

Col

 $L_{total} = L_U + L_{BC/IC} + L_{PDE}$ **Loss**

Imposing boundary condition :

SOFT HARD *Adding a loss term : penalize non-respect of boundary conditions directly enforce boundary conditions* $L_{BC/IC} = \sum_{\alpha}$ $X \in \partial \Omega$ $N(X)-u_{BC}(X)$

Applying a mask function on the output :

 $L_{total} = L_U + L_{BC/LC} + L_{PDE}$ **Loss**

Imposing boundary condition :

SOFT HARD *penalize non-respect of boundary conditions directly enforce boundary conditions* $L_{BC/IC} = \sum$ ∈ $N(X)-u_{BC}(X)$

 $u = F_{mask}[N(X)]$

Hard BC example :

 $u_{x=0} = u_{x=1} = 0$ $u_{y=0} = u_{y=1} = \cos(2\pi x)$

KU LEUVEN

 $L_{total} = L_U + L_{BC/IC} + L_{PDE}$ **Loss**

Imposing boundary condition :

Hard BC example :

 $u_{x=0} = u_{x=1} = 0$ $u_{y=0} = u_{y=1} = \cos(2\pi x)$

$$
L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...)\right\|
$$

$$
L_{BC/IC} = \sum_{X \in \partial \Omega} \left\| N(X) - u_{BC}(X) \right\|
$$

$$
L_U = \sum_{X \in \Omega} \left\| N(X) - u \right\|
$$

Forward problem :
no need for labeled data

 ∂ ∂X $\frac{\partial}{\partial t}$ performed using **A**utomatic **D**ifferentiation *Applying chain rule throw the network*

$$
L_{PDE} = \sum_{X \in \Omega} \left\| F(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial X}, \frac{\partial \widetilde{u}}{\partial t}, ...)\right\|
$$

$$
L_{BC/IC} = \sum_{X \in \partial \Omega} \left\| N(X) - u_{BC}(X) \right\|
$$

$$
L_U = \sum_{X \in \Omega} \left\| N(X) - u \right\|
$$

Forward problem :

no need for labeled data

Inverse problem : *Determining PDE parameters*

$$
F_{p_i}(\widetilde{u}, \frac{\partial \widetilde{u}}{\partial x}, \frac{\partial \widetilde{u}}{\partial t}, \ldots)
$$
 $p_i : model$

parameters

PINN to solve 1D Poisson equation

$$
\begin{cases}\n-\frac{\partial^2 u}{\partial x^2} = \pi^2 \sin(\pi x), & x \in [0,1] \\
u(0) = u(1) = 0\n\end{cases}
$$

Exact solution : $u(x) = \sin(\pi x)$

PyTorch

KU LEUVEN

PINN to solve 1D Poisson equation

$$
\begin{cases}\n-\frac{\partial^2 u}{\partial x^2} = \pi^2 \sin(\pi x), & x \in [0,1] \\
u(0) = u(1) = 0\n\end{cases}
$$

Exact solution:
$$
u(x) = \sin(\pi x)
$$

DeepXDE

PINN software

- *DeepXDE¹*
- *SciANN*
- *NeuroDiffEq*
- *IDRLnet*
- *…*

- *NeuralPDE.jl*

- *Modulus*

DeepXDE

A library for scientific machine learning and physics-informed learning

- ➢ Multi-backend : Tensorflow, Pytorch, JAX…
- \triangleright Simplified implementation, lot of features
- ➢ Very active community, latest research implemented
- \triangleright Well documented with a lot of examples

[1] Lu, Lu, Xuhui Meng, Zhiping Mao, et George E. Karniadakis. 2021. « DeepXDE: A deep learning library for solving differential equations ». *SIAM Review* 63 (1): 208-28.<https://doi.org/10.1137/19M1274067>

Literature review of PINN

Review papers

Github repository

1000+ papers by category *Convergence issues* \bigwedge Convergence issues

- **Application papers** *Mechanics, Chemistry, Robotics,…*
- **Network architecture** *Convolution, Graph Network, Separable-PINN, KAN…*
- **New implementation** *Variational form, Mixed PINN…*
- **Extension** *Uncertainty Quantification…*
- **Improving training** *Sampling strategy, Fourier features, Loss balance…*

[1] Karniadakis, George Em, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang, "Physics-Informed Machine Learning." Nature Reviews Physics 3, no. 6 (June 2021): 422-40. https://doi.org/10.1038/s42254 [2] Cuomo, Salvatore, Vincenzo Schiano di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and Francesco Piccialli. "Scientific Machine Learning through Physics-Informed Neural Networks: Where We Are and What's Next. [3] Toscano, Juan Diego, Vivek Oommen, Alan John Varghese, Zongren Zou, Nazanin Ahmadi Daryakenari, Chenxi Wu, and George Em Karniadakis. "From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning." arXiv,

KU LEUVEI

.

I. Introduction to Physics-Informed Neural Networks

KU LEUVEI

II. Improving the convergence of PINN

Techniques from the literature

An Expert's Guide to Training Physics-informed Neural Networks Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

Non-dimensionalization

Fourier features

Causal/curriculum training

Loss weighting strategies

Problem implementation

- Maximizing hard constraints
- **■** Mixed-PINN formulation

Network architecture

- **S**eparable **PINN**
- **K**olmogorov-**A**rnold **N**etwork

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

PINNs framework for continuum mechanics

Boundary **V**alue **P**roblem (**BVP**)**:**

Fields :

Equations :

$$
L_{PDE} = \sum_{\widetilde{\sigma} \in \Omega} \left\| \widetilde{\sigma_{ij,j}} + f_i \right\|
$$

PINNs framework for continuum mechanics

 u ? σ ? both? *Which output for the network ?*

Goal : maximise the number of **hard constraint**

Hard boundary condition only on the / ! \ *output of a neural network*

+ limit the order of the derivatives

Techniques from the literature

An Expert's Guide to Training Physics-informed Neural Networks Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- **S**eparable **PINN**
- **K**olmogorov-**A**rnold **N**etwork

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

Techniques from the literature

An Expert's Guide to Training Physics-informed Neural Networks Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- **S**eparable **PINN**
- **K**olmogorov-**A**rnold **N**etwork

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

Introduction to Separable-PINN

Fig. 1: SPINN architecture for a 3D problem

- ➢ A different network for each dimension
- \triangleright Low-rank tensor approximation
- \triangleright Expressive enough

(a) Non-factorizable (a) Factorizable

Fig. 2: Illustrative example of factorizable-coordinates constraint required for SPINN sampling

- \triangleright Faster computation
- \triangleright N^d points for the price of $N \times d$
- \triangleright Bring limitations in the geometry

[1] Cho, Junwoo, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, et Eunbyung Park. 2023. « Separable Physics-Informed Neural Networks ». arXiv.<https://doi.org/10.48550/arXiv.2306.15969>.

PINN for continuum mechanics : example from literature¹

Domain and boundary condition : The Solution is a set of Exact solution :

Volumic forces :

$$
f_x = \lambda \left[4\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Qy^3 \right] + \mu \left[9\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Qy^3 \right] f_y = \lambda \left[-3 \sin(\pi x) Qy^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) \right] + \mu \left[-6 \sin(\pi x) Qy^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) + \pi^2 \sin(\pi x) Qy^4/4 \right]
$$

$$
u_x(x, y) = \cos(2\pi x)\sin(\pi y),
$$

$$
u_y(x, y) = \sin(\pi x)Qy^4/4.
$$

Parameters :

 $\lambda = 1$ $\mu = 0.5$

Fig. 2 : Exact displacement and stress solution of the problem

[1] Haghighat, Ehsan, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. "A Deep Learning Framework for Solution and Discovery in Solid Mechanics." *ArXiv:2003.02751 [Cs, Stat]*, May 6, 2020.

PINN vs SPINN on a continuum mechanics example

SPINN outperforms in both speed and accuracy

Techniques from the literature

An Expert's Guide to Training Physics-informed Neural Networks Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- **S**eparable **PINN**
- **K**olmogorov-**A**rnold **N**etwork

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

Techniques from the literature

An Expert's Guide to Training Physics-informed Neural Networks Sifan Wang, Shyam Sankaran, Hanwen Wang, Paris Perdikaris

- non-dimensionalization
- Fourier feature
- causal/curriculum training
- loss weighting strategies

Problem implementation

- Maximizing hard constraints
- Mixed-PINN formulation

Network architecture

- **S**eparable **PINN**
- **K**olmogorov-**A**rnold **N**etwork

Optimization algorithm

- Adam + LBFGS
- Adaptative sampling

II. Improving the convergence of PINN

-
-

III. PINN for inverse quantification of material parameters

36 Department of Mechanical Engineering

Resources

Separable Physics-Informed Neural Networks for Robust Inverse Quantification in Solid Mechanics

Damien Bonnet-Eymard, Augustin Persoons, Matthias Faes, and David Moens

Presented at ISRERM 2024 conference - Available on ResearchGate

Code and results are available online :

www.github.com/bonneted/ISRERM2024 - SPINN branch of DeepXDE

relies on

- ➢ [bonneted/deepxde at SPINN \(github.com\)](https://github.com/bonneted/deepxde/tree/SPINN)
- \triangleright still under development

Inverse quantification from full field measurements

Digital **I**mage **C**orrelation

Inverse quantification from full field measurements

KU LEUVEN

PINNs for continuum mechanics : case study from literature¹

Domain and boundary condition : The Solution is a set of Exact solution :

Volumic forces :

$$
f_x = \lambda \left[4\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Qy^3 \right] + \mu \left[9\pi^2 \cos(2\pi x) \sin(\pi y) - \pi \cos(\pi x) Qy^3 \right] f_y = \lambda \left[-3 \sin(\pi x) Qy^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) \right] + \mu \left[-6 \sin(\pi x) Qy^2 + 2\pi^2 \sin(2\pi x) \cos(\pi y) + \pi^2 \sin(\pi x) Qy^4/4 \right]
$$

$$
u_x(x, y) = \cos(2\pi x)\sin(\pi y),
$$

$$
u_y(x, y) = \sin(\pi x)Qy^4/4.
$$

Fig. 2 : Exact displacement and stress solution of the problem

[1] Haghighat, Ehsan, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. "A Deep Learning Framework for Solution and Discovery in Solid Mechanics." *ArXiv:2003.02751 [Cs, Stat]*, May 6, 2020.

Inverse quantification of elasticity parameters : SPINN

Converge directly in a few minutes

More realistic example ?

Inverse quantification benchmark from the literature¹

16 simulated measurements *Using FEM as the reference*

Strain corrupted with noise

1 *gaussian noise (*≈*10% of std.)*

[1] Martins, J.M.P., António Andrade-Campos, et Sandrine Thuillier. 2018. « Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements ». International Journal of Mecha

Benchmark from the literature: SPINN results

16 simulated measurements *Using FEM as the reference*

Strain corrupted with noise

1 *gaussian noise (*≈*10% of std.)*

SPINN 10x more accurate

Expected: regression model dealing with an unbiased noise

-
-

III. PINN for inverse quantification of material parameters

-
-
-

IV. PINN to propagate uncertainty

Resources

Physics-Informed Neural Networks to propagate random field properties of composite materials

D. Bonnet-Eymard, A. Persoons, P. Gavallas, M. GR Faes, G. Stefanou, D. Moens

Presented at USD 2024 conference - Available on ResearchGate

Code and results are available online :

Polynomial Chaos Expansion (PC)

PCE coefficients to be found

Resolution (determining y_{α} **) :**

- sampling
- y_{α} determined using least squares, least angle...

Space dependent output : $Y(\xi, x)$?

- discretization of the output (PCA...)
- Spatially dependant coefficients

Space dependent Polynomial Chaos Expansion

Resolution (determining y_{α} **) :**

- sampling
- y_{α} determined using least squares, least angle...

Space dependent output : $Y(\xi, x)$?

- discretization of the output (PCA...)
- **Spatially dependant coefficients**
- \triangleright Use a Neural Network as the approximator :

 $v_{\alpha}(x) = NN(x)$ **= PINN-PC**

PINN-PC¹

Fig. 1 : Schematic representation of the PINN-PC framework.

Several coefficients to predict :

- grouping them by their polynomial degree
- using a separate neural network for each group


```
by a factor N = the number of samples
```
[1] Zhang, Dongkun, Lu Lu, Ling Guo, et George Em Karniadakis. « Quantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems ». Journal of Computational Physics 397

Poisson equation : reference solution

Poisson equation

$$
-\frac{\mathrm{d}^2}{\mathrm{d}x^2}u = f(x; \omega), \quad x \in [-1, 1] \text{ and } \omega \in \Omega,
$$

$$
u(-1) = u(1) = 0.
$$

Forcing term

$$
f(x; \omega) \sim \mathcal{GP}(f_0(x), \text{Cov}(x, x'))
$$

\n
$$
f_0(x) = 10 \sin(\pi x)
$$

\n
$$
\text{Cov}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{l_c^2}\right),
$$

Problem setup : The Setup : The Setup in Setup : The Finite difference solution :

Poisson equation : random field discretization

Discretization of $f(x, \omega)$ **:**

Forcing term $f(x; \omega) \sim \mathcal{GP}(f_0(x), \text{Cov}(x, x'))$ $f_0(x) = 10\sin(\pi x)$ $Cov(x, x') = \sigma^2 \exp \left(-\frac{(x-x')^2}{l_s^2}\right),$

Karhunen–Loève expansion

$$
f(x) = f_0(x) + \sum_{n=1}^{\infty} \sqrt{\lambda_n} \phi_n(x) \xi_n
$$

On a discrete space :

 $Cov(x, x') = Mcov$ $K-L \leftrightarrow$ Spectral decomposition of *Mcov*

K-L expansion.

- *GP represented by 6 variables :* $(\xi_1, \xi_2, ..., \xi_6)$
- *1 order PCE : only 6 polynomials* $\Psi_i(\xi) = \xi_i$

Poisson equation : implementation

Neural Network

- MeanNN: [1, 4, 4, 1], to approximate $u_0(x)$
- CoeffNN: [1, 36, 36, 36, 36, 6], to approximate $y_{\alpha}(x)$
- Tanh activation function

Fig. 4: approximated PCE coefficients

Training :

- 1000 samples of f
- 13 training points in [-1, 1]
- Adam (20000 epochs, $Ir = 1e-3$)

Fig. 5: Mean and standard deviation of the solution

-
-
-

IV. PINN to propagate uncertainty

II. Conclusion

Conclusion

PINN: a powerful tool that is becoming increasingly mature

Idea : use an **artificial neural network** to approximate the solution of a **boundary value problem** defined by a partial differential equation (**PDE**) and boundary conditions (**BCs**)

Physics-Informed loss function : $L_{total} = L_U + L_{BC/IC} + L_{PDE}$

- **L**_{PDE}: PDE calculated through automatic differentiation
- L_{BC/IC}: Residual between PINN approximation and BCs values
- L_{II} : Residual between PINN approximation and measurements

loss minimized compliance to the PDE, BCs and data

The training (i.e., finding the network parameters that minimize the loss) rely on stochastic optimization and can struggle to converge

Techniques to improve convergence

- Hard constraints
- **Mixed formulation**
- Separable-PINN
- Adaptative sampling

Possible applications

- Inverse quantification
- **■** Uncertainty propagation

Damien Bonnet-Eymard PhD student at KU Leuven

damien.bonnet-eymard@kuleuven.be

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 955393.

GREYDIENT project Marie Sklodowska-Curie Actions **www.greydient.eu**

