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Fluid Mechanics

= Fluids play a fundamental role for life
Human body contains 60% water
2/3 earth’ s surface covered by water
Atmosphere extends for 17km above earth’ s surface

* Fluid mechanics is part of our history
Geomorphology
Human migrations and birth of civilizations
Modern scientific and mathematical theories

= Key to many problems in science and engineering
Turbulence, geosciences, biology, astrophysics
Weather and climate
Aerospace, Energy, Industrial processes, health

First full engine computation with large-eddy simulation _

Project FULLEST - C. Pérez Arroyo et al. - 2020




Investigating fluids

1. Experimental Fluid Mechanics

Archimede Galileo Reynolds
Theoretical Fluid Mechanics (C. 287-212 AC) (C.287-212AC)  (1842-1912)

Computational Fluid Dynamics

|G

Bernoulli  Euler  Navier Stokes  Prandtl  Taylor
(1667-1748) (1707-1783) (1785-1836)  (1819-1903) (1875-1953) (1886-1975)

Data-driven Fluid Mechanics? HEE A ;{ Y -

High-Performance computing




Governing equations (continuum limit)

: D
= Conservation of mass :D—': = —pV-v

" Conservation of momentum : p% =—-Vp+V-1, +pf

= Conservation of energy : p%i =—-V-(pv)+V:-(v-1,)+pf-v-V-q

= Constitutive equations :

Rheology models : e.g. Newtonian fluid T, = 2uS + Atr(S)I
Heat flux : q = —kVT
Equation of state, p = p(p, e)

Heat
Work of
Surface surface forces transfer
forces

Work of body
forces




Multi-fluid
equations...

= Mass, momentum (and energy) conservation for
each fluid k
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akt “iv. (PraxVv) = oMy

9 (P ax Vi)
% + V- (pr Vi Vi)

= —a;;Vp + V- (ayt,) + praif + 1

d(praxTy)
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= Wpi + Wepe + Wrpe + Wi + Qk

+ V- (pravi Ty)

= Supplementary models for:

Rheology, thermophysical properties, mass-
echange terms, interfacial forces, heat
fluxes...




The “simple” case Stokes flow

= Navier-Stokes equations for a single-phase, single-species,
incompressible, constant-property Newtonian fluid :

V-v=20

av L yp + 72
o ppvv

= Buckingham theorem = nondimensional form Laminar flow

-v=20

W v Ty = —Vp 4 V2
ot TV VT TP TR Y

VyerL
= Reynolds number : Re = —£L-7¢f

Ratio of inertia to viscous forces < ratio of diffusion to convection
time scales

Ratio of nonlinear to linear terms!
Turbulent flow

Van Dyke, 1982




Multiples scales

://svs.gsfc




Challenges

" Analytical solutions possible for a limited range of simple flow cases

= Asymptotic expansions, linearization techniques...
Simplifying assumptions
But parcimonious and interpretable models! Generalizable to some extent...

Fixed

Fixed




Challenges

= Experimental investigation costly and time consuming

= Incomplete/noisy (inaccessible regions, scale cutoff, reconstruction errors, unobservable quantities)

= One-shot! Interpretable? Uncertainties?

Time-resolved tomographic PIV of incompressible flow past a cylinder at
Rep=27000 (Scarano et al., 2022)

o https://ww ‘- Mde/fr/application
B1|5 kv 28.6 mm 81 x SE 07/14/14, 13:22 S/ﬂUid-meCh‘ ini 4. a solved_3d-
Smits&Hultmark, 2014 particle-tracking/i




Challenges

Solving all scales generally unfeasible = coarse-grained approaches

Number of cells required for solving all scales

3
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Cost= R€11/4 (number of cells x number of time iterations)

Free-shear flow: = Re%* : cost = Re®>
Wall-bounded flows (Wall-Resolved LES, WRLES) : = Rel8 ; cost = Re?*

- quasi-DNS resolution

Drastic reduction of computation time

Models are less universal and suffer from uncertainties




Multiple modeling fidelities

y

Boeing 777 from NYC
to Beijing and back

\&\\\ per capita CO2
emissions, US
LES/RANS

Methods \\\
1 kg of beef
102
RANS Simulations 2000 2010 éﬁ? 2030 2040

Estimates of carbon footprint for channel flow
DNS [Yang et al., 2024]
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Uncertainty
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modeled physics

= High carbon footprint of large simulations
= Hi-Fi CFD (DNS, Wall-Resolved LES) limited to low/moderate-Reynolds numbers

= Mid-Fi CFD Wall-Modelled LES, WMLES, and hybrid RANS/LES are attractive alternatives but do not solve all
of the problems
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CNN-1 (Baseline)

HiFi-quality CFD at the cost of
LoFi (or less!)

 Automated design and optimization

e Uncertainty quantification

* Digital Twins and real-time simulation

Routine engineering and multi-query applications: |
RANS modeling

a1 (t)
—0.098

Yyo(xy)

Sayadi et al., 2020




The promises of Machine Learning

Potentially disruptive impact of artificial intelligence/machine learning (ML) techniques:
= Abundant HiFi databases = super-resolution, feature extraction, model augmentation, digital twins, control,
surrogate modeling, clustering, classification...

Machine Learning

l Accelerate Improve ‘ Can ML enable fast
simulations, hysica ogme .
improve scling Undersanding HiFi-quality for

scientific discovery
and

wavenumber » / engineering?

Direct Numerical Turbulence Modeling Reduced-Order
Simulation (LES and RANS) Models

Vinuesa & Brunton, 2022
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Requirements

" Interpretable and generalizable models

As simple as possible, but not simpler (parcimony principle)

o Example

0 1
Vigp = O,—('b =0 and 2—;+—2 IVo|? = cte

on

= Uncertainty control

Tell something about model reliability, especially in unseen
environments

» Deal with sparse/noisy data
Very partial sampling from some unknown distribution




Application 1: Reduced-order/surrogate models/neural operators

The response of a costly model to some parameters is reproduced by a cheap ML model (surrogate model
or metamodel)

Inclusion of physical constraints in the loss function
Useful for optimization, uncertainty quantification, parameter estimation, control tasks
Surrogate quality control?

Amount of required data vs range of configurations potentially covered?

Catalani et al., 2024, Multiscale Implicit Neural Representation (INR)




Application 1: Reduced-order/surrogate models/neural operators

Nonlinear reduction of flow dynamics, pattern extraction, causality effects

Single flow, spectral bias (small structures ill-captured)

Nonlinear modes (weights between latent variables and flow field)

Fukami et al. 2023




Application 1: Replace costly simulators

Neural operators learn the solution
operator

FourCastNet (NVIDIA), short for Fourier
ForeCasting Neural Network

Global data-driven weather forecasting
model

Accurate short to medium-range global

predictions at 0.25¢ resolution.
Dramatic reduction of CPU cost

Ensemble forecasting

(@) Hurricane Michael Forecast Track

°N 47.25

W Truth

o FourCastNet
Mean
FourCastNet
Uncertainty

97.0 92.0 87.0 82.0 77.0 °w

(b) Minimum Pressure at Eye
10° Pa

® FourCastNet Mean
® Truth

1.005( e_*

Min MSLP

36 48 60 72 84 96
Forecast Time (Hours)

(c) Surface Wind Speed Lead Time: =~ Lead Time:

18hr 36hr

FourCastNet:

o Initial Condition
m/s N (0 hr)
65.0

Lead Time:
54hr

Lead Time

109.75 93.25 76.75 60.25
ow

(d) 850hPa Wind Speed

oy Initial Condition
m/s
65.0

109.75 93.25 76.75 60.25
w




Application 2: Flow control

" Drag reduction via Deep Reinforcement Learning

= Discovery of new control strategies

= Detection of sensitive flow structures

Guastoni et al., 2022

t action a; = Vwall 0.051

0.004

—0.05

VUwall, OPpOsition

=[F

0.051

0.001

Vwall, DRL

state s, = (u/,v') <> rewat

Ty = 1- Tw/Tw,uucontrollcd




High-fidelity data

Application 3: Discovery/augmentation of models

" Learn data-driven coarse-grained models

= Symbolic regression, neural networks, random forests,
Gaussian processes, ...

Features

. 18 e 27 30
Low—fidelity CFD (RANS) High-fidelity CFD High-fidelity experiment




Open-box ML for the discovery of turbulence models
[Schmelzer et al., 2020]

SpaRTA = rse Regression of Turbulent-stress /~nisotropy

= Start with linear eddy viscosity model (here, Menter’s k — w SST)

1 V¢
Tij = 2k (bl} +§6ij); bl] — —ISU; Ve = f(k,a))

+ transport equations for k and w

* |nternal additive corrections of Reynolds stress anisotropy (/) and turbulent transport equations (/):

Vit Dk
bij — —?Sijﬁ‘ =

Dw
— =P D+T — =P, + +D+T
Dt T EEnT pt ?

= Learn [ and /? from high-fidelity data

SPARSE SYMBOLIC IDENTIFICATION

Open-box learning from a dictionary of operators




Bayesian learning : SBL-SpaRTA [cherroud et al., 2022]

= Find p( , | ) using the efficient Sparse Bayesian Learning (SBL) algorithm (Tipping 2001)

Solves a generalized linear regression problem

Recursively select features in C,dictionary and infer parameter posteriors




SBL-SpaRTA : discovered models

» Training data Data
DNS of turbulent channel flow, 180 < Re, < 590

PIV of near sonic axisymmetric jet
LES of Periodic Hills (PH) at Re=10595
DNS of Converging-Diverging (CD) channel at Re=13600
LES of Curved Backward Facing Step (CBFS) at Re = 13700

Training case Model Interpretation
MIGTAN) = (0] + 0.0914
(0] +4.61 x 1073
((0.33 4 0.0189)] T + 0.00622
0] +3.45 x 10~

: — 2073 __ 0 O ] ,
SEP b = 0.017313 =0.0348 | b3 (sEP) _ 0, (1 4 0.681)52 — pLeHAN)

CHAN pLHAN) — 91,52 (baseline k — w SST)

ANSJ (Po)ANSD — 95, (1 — 0.33)52 = 0.67PCHAN)

1) 4+ 0.0318

Channel flow : the discovered model correction is 0!




SBL-SpaRTA
= Curved backward-facing step flow at Re=13700

Hi-Fi reference
- k — wSST
_ SBL
+ 30




Generalization

= Customized models may generate large errors when applied outside their application range

MZPG) ;.. M(CHAN) . __ M(APG) .
M(SEP) . , High-fidelity data : O
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Quest for the “universal”

= Some degree of general




Towards more generalizable ML models

= Model Mixtures
: combining models trained on subsets better than single model trained over all data
: uncertainty on which model (among those at hand) is better

Generate by combining component models

Mixture of Experts




Spatial model aggregation (XMA) of turbulence models [de zordo et al., 2021

Consider a set of K competing models M = {M{, M5, ..., M}
« Hypermodel »: My, (x,0) = Y5_1 wi Mg (X; 0), with
Wi = Wi (X) = wy( )
Regress wy ( | V) from data as a function of features = Random Forests, Gaussian Processes, ANN...

Features from Ling&Templeton (2015)

Predict local model weights for a new case wy( |V) and use them to aggregate individual model predictions

Uncertainty estimates can be obtained by aggregating the component variances

K
Var[Myy,(x,0)] = Z wiVar[Mg(x; 0)]
k=1




XMA : offline training

[Cherroud et al., 2023]
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Baseline model calculations,
training flows

XMA Training Workflow

Features Weights

nx Wy (X)

|
|
1

Random Forest Regressor

Weighting functions
wi = wik (X))

SBL-SpaRTA model
weight evaluation

7 Model 1 S

High-fidelity
data




XMA prediction: model blending

Oulghelou et al., 2024: https://arxiv.org/abs/2410.14431

Intrusive X-MA Prediction Workflow

Baseline model calculation

SBL-SpaRTA corrections

/
| Model 1 ——
|

Corrections
b2 (%), Ry (%)

Model 2 —,

\ Model K —

Corrections
b3 (x), Ry (x)

Corrections
b2 (x), Rx (%)

Features
n(x)
: Weighting functions
wi = wit M(x))

Model aggregation
/ - - -~

bx_ma(x) = b(x)
K

) w(n@)be)
k=1

Rx_ma(x)
K

= > wr(n(x))Re(®) :
=1

/




NASA Turbulence Modeling Testing Challenge

= Application to Test Case 4 2DWMH: 2D NASA Wall-Mounted Hump Separated Flow Validation Case

) experimental data [67, 68]

(---) Mansy, (---) MssT

F (---) Msgp, (---*) Mplend

o0 8 6 ' P ) 2 ' 0.25 0.50 0.75 1.00 1.25
z 2/L+ U,/ (10U

(a) RANS velocity obtained by Mpiend (b) Velocity profiles across /L locations.

XMA better than individual

models for all cases +

improvement over the TE F
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(c) Absolute errors. (d) Weight distributions




Training from clustered data

" Training flows contain several physical processes at once
Equilibrium BL, non-equilibrium BL, separation, wakes, corner flows, vortices, shocks...
Training algorithms tend to find a compromise among such processes

"= |s it possible to find a better training strategy?
IDEA: Train by clusters, then aggregate

Roques et al. ETMM14

Leggett et al. ASME J Turbo, 2016




Clustered model aggregation [Roques et al., ETMM14]

Offline training

4 )

Clustering Bayesian learning [

Within-cluster ]\

weights

A;A PRIOR POSTERIOR

p— LIKELIHOOD /'lk Based on local score of
— | | model / in cluster k

\

kKX

; )
0, ¢ 0

[ I
" 0.0 0.5 1.0 15 2.0 2.5 3.0 (M |Y ) ~ p(YklMl)p(Ml)
Identify the dominant p(8|D) < p(D[8)p(6) PRI = Lo (Y| M) (M)

physical processes* For each cluster k \ /

Online prediction
Reconstruction

Cluster probability H Within-cluster weighting A= ZZp(Ck)wikA(Mi)

*Inspired from Callaham et al. 2021
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Conclusions

Artificial intelligence and physics are changing one another

Physical modeling , simulation, and experiments can successfully merge with ML to mine large datasets or to
solve complex problems

ML can be analysed under the lens of physics/mathematics

Fluid Mechanics complex multiscale and highly nonlinear flow problems are difficult and costly to
represent with standard modeling technique and may hugely benefit from Al

High standards of scientific discovery (interpretability, uncertainties, ...) call for more generalizable ML

Enforcement of hard constraints, inductive biases, novel definitions of loss functions...

Massive amount of HF data are becoming available BUT

Mostly limited to “simple” configurations and low Reynolds numbers

A relatively small number of well-detailed configurations is available

Use of is essential for reaching more complex, high-Reynolds configurations

Likely, we will NEVER have enough data to cover all possible fluid flow processes BUT




Outlook

= “Smart” training instead of “brute-force” training 2>
learn the “language of fluids”

Identify and extract features and “building blocks”
representative of dominant physical processes

Recursively encode and combine blocks for prediction
based on context

Use uncertainty estimates to update the model

= Foundation models: train from heterogeneous
data and for multiple tasks, fine-tune

Translate into simpler, explicit models (Al-Feynman, pySR)

for specific end use

Data

Text '\/l

Images

Speech ‘”/

Structured
. Data

3D Signals é

ay
Training Foundation
Model

Adaptation

Bommasani et al., 2022

Tasks

Question 9D
Answering ==

Sentiment
' Analysis

~

Information
Extraction

Image
Captioning

==

Object
Recognition

Instruction
Following ..




