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 Neural PDE solvers &  neural operators

 Two families of neural operators
 CORAL: Operator Learning with Neural Fields

 Neural fields for encoding continuous functions

 AROMA:  Attentive Reduced Order model with Attention
 Attention/ Transformers for encoding spatiality in latent space



Neural PDE solvers: Tasks and objectives
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Objectives

• Surrogate models for solving PDEs or spatio-temporal forecasting
• Accelerate simulation, complement physical models, design, etc

Approaches

• Pure data-driven approaches
Learn from observations or 
simulations

• Hybrid approaches
Leverage prior physical
background + information 
extracted from data

• Data free approaches
PDE loss only

Numerical solvers & Neural solvers

• Classical numerical solvers operate
on grids or meshes

• Finite differences, finite
elements, finite volumes

• Neural solvers operate on tensors
(grids) or graphs (irregular
meshes)



Neural PDE solvers: Learning operators
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Instead of learning maps between vector space, learn maps between infinite
input and output function spaces

Images for example are considered as continuous functions

Key motivations
 Mesh free operators

Handle general geometries, resolution independence
 Multi-resolution
 High dimensional problems
 Interpolate between function spaces instead of vector spaces

e.g. solve parametric equations: varying I/B conditions, forcing terms, equation
coefficients , ...

Representative neural operators
 Fourier Neural operators (Li et al. 2021) - Stanford
 Deep-Onet (Lu et al. 2021) – Brown Univ.
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CORAL:COordinate-based model for opeRAtor
Learning

Serrano et al. , 2023, Operator Learning with Neural Fields: 
Tackling PDEs on General Geometries, NeurIPS
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Neural Fields (Implicit Neural Representations)
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 Coordinate-based approximation of functions
 Continuous representations of objects as coordinate-dependent functions
 Appeared initially as a novel way to represent 3D shapes in place of discrete

representations
 Example: signed distance

 The shape is fully described by the NN parameters
 Mesh-free approach – independent of the resolution: learn from point sets
 Lower memory requirements than discrete representations

 References: Sitzmann et al. 2020, Fathony et al., 2021, Tancik et al. 2020, etc

Fig. Park et al. 2019

𝒙
 
𝒚

 𝒛

2024-11-21



Neural Fields (Implicit Neural Representations)
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 Learning several images
 A neural field model represents one image
 How to represent multiple images using a single model?

 Condition the neural field on a compact code specific of an image

 This code ௜ could be learned e.g. through auto encoding by gradient descent and 
is specific to an image

 Conditioning is performed through an hypernetwork
 Network weights (in blue) are  shared across images
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CORAL : Operator Learning with Neural Fields (Serrano et al. 
2023)
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 Tasks
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Direct forecasting
଴ ்

Dynamics modeling
௧ ௧ାଵ

Geometry aware
inference

௦௢௟



C3: Neural operator
Encode – Process – Decode framework
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Encode-Process-Decode has become the standard framework for 
many spatio-temporal forecasting problems

Decoder

Processor: time stepping
Unroll the dynamics in a latent space

Encoder



CORAL : Operator Learning with Neural Fields
Inference
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

DecodeEncode

Input Output

Neural Field + 
Hyper-network

Neural Field + 
Hyper-network

Differentiable ODE solver
2024-11-21

DecodeEncode

Process



CORAL : Operator Learning with Neural Fields
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 Example: IVP on Airfoil (predict pressure, density, velocity)
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CORAL can forecast physical fields from different initial conditions with different
boundary conditions



CORAL : Operator Learning with Neural Fields
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 Example: forecasting on Shallow-Water (vorticity)
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CORAL shows strong robustness to changes of grid and can extrapolate in time



CORAL : Operator Learning with Neural Fields
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 Geometry aware inference: NACA-Euler (Mach number)
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CORAL is on par with baseline for geometry-aware inference



AROMA: Attentive Reduced Order Model with
Attention

Serrano et al. , 2024,  AROMA: Preserving Spatial Structure for 
Latent PDE Modeling with Local Neural Fields, NeurIPS
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AROMA: Attentive Reduced Order Model with Attention (Serrano 
et al. 2024)
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 Principled Framework:
 Properties

 Handle diverse geometries: inputs and outputs may consist in point sets, grids, 
meshes

 Can be queried at any spatial position

 Demonstrates how modern NN components allow building versatile 
PDE solvers

 Encode/ Process/ Decode framework

 Encoding: cross-attention maps variable-size inputs to a fixed-size compact 
latent token space encoding local spatial information

 Processing: a diffusion transformer architecture to model dynamics and 
exploit spatial relations locally and globally via self-attention + model 
uncertainty

 Decoding: uses a conditional neural field + cross-attention to query 
forecast values at any spatial point within the equation's domain



AROMA: Attentive Reduced Order Model with Attention
Attention – Self attention
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
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Self attention module

Captures contextual representation of the inputs

Complexity ଶ with the size of the input sequence



AROMA: Attentive Reduced Order Model with Attention
Attention – Cross attention
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
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Cross attention maps a sequence of vector ( ) of variable 
size into a sequence of vector ( ) of fixed size 

Complexity: 

Cross attention module

projection matrix



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024)
General framework
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

Cross-attention encoder: ௧ ௧

• Encodes variable size discretized input into a fixed size & small
dimensional sequence of latent embedding tokens

• encodes local spatial information on problem geometry + variable 
values

Cross-attention

Encoder module



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024)
General framework
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

Time stepping transformer: ௧ ௧ା୼௧

• Learns the dynamics in the small dimensional latent space
• Self attention models relations between spatial latent tokens
• Inference: dynamics is enrolled in the latent space starting from an 

initial condition– low complexity
• Diffusion: introduces a stochastic component

Self-attention

Processor



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024)
General framework
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

Cross-attention neural fields decoder: ௧ା୼௧ ௧ା୼௧

• Maps the latent representation ௧ା୼௧ to the original physical space
• Can be queried at any position of the physical space

Cross-attention

Decoder module



AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention
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Burgers equation ground truth Tokens encode local spatial 
information

Token 0 Token 1

Token 2 Token 3

Example: Burgers equation – perturbation analysis on the tokens



AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention
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Gallinari
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Cylinder flow ground truth

Tokens encode local spatial 
information – cross attention 
between tokens and 

Example: Cross attention on cylinder flow



AROMA: Attentive Reduced Order Model with Attention
Stability on long rollouts
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 Trained to predict next step on 50 time steps trajectories

 Unrolled for 200 steps



AROMA: Attentive Reduced Order Model with Attention
Uncertainty

24

 Uncertainty indicator
 The processor is a diffusion transformer

 Incorporates stochastic components

 Example: Burgers equation

 Mean and variance after 100, 200, 400 rollouts computed on 5 runs
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 Thanks for your attention!!
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