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 Neural PDE solvers &  neural operators

 Two families of neural operators
 CORAL: Operator Learning with Neural Fields

 Neural fields for encoding continuous functions

 AROMA:  Attentive Reduced Order model with Attention
 Attention/ Transformers for encoding spatiality in latent space



Neural PDE solvers: Tasks and objectives
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Objectives

• Surrogate models for solving PDEs or spatio-temporal forecasting
• Accelerate simulation, complement physical models, design, etc

Approaches

• Pure data-driven approaches
Learn from observations or 
simulations

• Hybrid approaches
Leverage prior physical
background + information 
extracted from data

• Data free approaches
PDE loss only

Numerical solvers & Neural solvers

• Classical numerical solvers operate
on grids or meshes

• Finite differences, finite
elements, finite volumes

• Neural solvers operate on tensors
(grids) or graphs (irregular
meshes)



Neural PDE solvers: Learning operators
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Instead of learning maps between vector space, learn maps between infinite
input and output function spaces

Images for example are considered as continuous functions

Key motivations
 Mesh free operators

Handle general geometries, resolution independence
 Multi-resolution
 High dimensional problems
 Interpolate between function spaces instead of vector spaces

e.g. solve parametric equations: varying I/B conditions, forcing terms, equation
coefficients , ...

Representative neural operators
 Fourier Neural operators (Li et al. 2021) - Stanford
 Deep-Onet (Lu et al. 2021) – Brown Univ.

2024-11-21



CORAL:COordinate-based model for opeRAtor
Learning

Serrano et al. , 2023, Operator Learning with Neural Fields: 
Tackling PDEs on General Geometries, NeurIPS
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Neural Fields (Implicit Neural Representations)
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 Coordinate-based approximation of functions
 Continuous representations of objects as coordinate-dependent functions
 Appeared initially as a novel way to represent 3D shapes in place of discrete

representations
 Example: signed distance

 The shape is fully described by the NN parameters
 Mesh-free approach – independent of the resolution: learn from point sets
 Lower memory requirements than discrete representations

 References: Sitzmann et al. 2020, Fathony et al., 2021, Tancik et al. 2020, etc

Fig. Park et al. 2019
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Neural Fields (Implicit Neural Representations)
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 Learning several images
 A neural field model represents one image
 How to represent multiple images using a single model?

 Condition the neural field on a compact code specific of an image

 This code  could be learned e.g. through auto encoding by gradient descent and 
is specific to an image

 Conditioning is performed through an hypernetwork
 Network weights (in blue) are  shared across images
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CORAL : Operator Learning with Neural Fields (Serrano et al. 
2023)
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 Tasks
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Direct forecasting
 ்

Dynamics modeling
௧ ௧ାଵ

Geometry aware
inference

௦



C3: Neural operator
Encode – Process – Decode framework
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Encode-Process-Decode has become the standard framework for 
many spatio-temporal forecasting problems

Decoder

Processor: time stepping
Unroll the dynamics in a latent space

Encoder



CORAL : Operator Learning with Neural Fields
Inference
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DecodeEncode

Input Output

Neural Field + 
Hyper-network

Neural Field + 
Hyper-network

Differentiable ODE solver
2024-11-21

DecodeEncode

Process



CORAL : Operator Learning with Neural Fields
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 Example: IVP on Airfoil (predict pressure, density, velocity)
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CORAL can forecast physical fields from different initial conditions with different
boundary conditions



CORAL : Operator Learning with Neural Fields
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 Example: forecasting on Shallow-Water (vorticity)
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CORAL shows strong robustness to changes of grid and can extrapolate in time



CORAL : Operator Learning with Neural Fields
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 Geometry aware inference: NACA-Euler (Mach number)
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CORAL is on par with baseline for geometry-aware inference



AROMA: Attentive Reduced Order Model with
Attention

Serrano et al. , 2024,  AROMA: Preserving Spatial Structure for 
Latent PDE Modeling with Local Neural Fields, NeurIPS
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AROMA: Attentive Reduced Order Model with Attention (Serrano 
et al. 2024)
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 Principled Framework:
 Properties

 Handle diverse geometries: inputs and outputs may consist in point sets, grids, 
meshes

 Can be queried at any spatial position

 Demonstrates how modern NN components allow building versatile 
PDE solvers

 Encode/ Process/ Decode framework

 Encoding: cross-attention maps variable-size inputs to a fixed-size compact 
latent token space encoding local spatial information

 Processing: a diffusion transformer architecture to model dynamics and 
exploit spatial relations locally and globally via self-attention + model 
uncertainty

 Decoding: uses a conditional neural field + cross-attention to query 
forecast values at any spatial point within the equation's domain



AROMA: Attentive Reduced Order Model with Attention
Attention – Self attention
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Self attention module

Captures contextual representation of the inputs

Complexity ଶ with the size of the input sequence



AROMA: Attentive Reduced Order Model with Attention
Attention – Cross attention
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Cross attention maps a sequence of vector ( ) of variable 
size into a sequence of vector ( ) of fixed size 

Complexity: 

Cross attention module

projection matrix



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024)
General framework
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Cross-attention encoder: ௧ ௧

• Encodes variable size discretized input into a fixed size & small
dimensional sequence of latent embedding tokens

• encodes local spatial information on problem geometry + variable 
values

Cross-attention

Encoder module



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024)
General framework
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Time stepping transformer: ௧ ௧ା௧

• Learns the dynamics in the small dimensional latent space
• Self attention models relations between spatial latent tokens
• Inference: dynamics is enrolled in the latent space starting from an 

initial condition– low complexity
• Diffusion: introduces a stochastic component

Self-attention

Processor



C3: Neural operators
AROMA: Attentive Reduced Order Model with Attention (Serrano et al. 
2024)
General framework
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Cross-attention neural fields decoder: ௧ା௧ ௧ା௧

• Maps the latent representation ௧ା௧ to the original physical space
• Can be queried at any position of the physical space

Cross-attention

Decoder module



AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention
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Burgers equation ground truth Tokens encode local spatial 
information

Token 0 Token 1

Token 2 Token 3

Example: Burgers equation – perturbation analysis on the tokens



AROMA: Attentive Reduced Order Model with Attention
Cross-attention encoder captures spatial attention
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Cylinder flow ground truth

Tokens encode local spatial 
information – cross attention 
between tokens and 

Example: Cross attention on cylinder flow



AROMA: Attentive Reduced Order Model with Attention
Stability on long rollouts
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 Trained to predict next step on 50 time steps trajectories

 Unrolled for 200 steps



AROMA: Attentive Reduced Order Model with Attention
Uncertainty

24

 Uncertainty indicator
 The processor is a diffusion transformer

 Incorporates stochastic components

 Example: Burgers equation

 Mean and variance after 100, 200, 400 rollouts computed on 5 runs
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 Thanks for your attention!!
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