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Introduction

Conception is still lengthy process:

Optimizing

Simulation

Parametrization
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Introduction

Two main ways for speeding up design:

Simulation
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Introduction

Two main ways for speeding up design:

* Accelerate simulation:
* Use surrogates (Statistical models)
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Introduction

Two main ways for speeding up design:

Accelerate simulation:

Use surrogates (Statistical models)

[

Optimizing

Set free from parametrization:

Make geometry changes non parametric
Have a generic datamodel for physical studies
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Introduction

Non parametric design taken to the extreme: topology optimisation

CD

Rethlnk your design
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1) Nardoni, C., Danan, D., Mang, C., Bordeu, F., Cortial, J. (2022). A R&D Software Platform for Shape and Topology Optimization Using Body-Fitted Meshes. In: Sevilla, R., Perotto, S.,
Morgan, K. (eds) Mesh Generation and Adaptation. SEMA SIMAI Springer Series, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-92540-6_2
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Speeding up computations:

Models fit for physical problems
Physics informed learning: promises and challenges

Lm0

Inputs Outputs

High dimensional inputs and outputs
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Real FNO

Kovachki, Nikola B., Zong-Yi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart and Anima Anandkumar. “Neural
Operator: Learning Maps Between Function Spaces With Applications to PDEs.” J. Mach. Learn. Res. 24 (2023): 89:1-89:97.
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Speeding up computations:
Models fit for physical problems
Physics informed learning: promises and challenges
Lm0

Real FNO

Focuses on global features

Kovachki, Nikola B., Zong-Yi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart and Anima Anandkumar. “Neural
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GNN

Linear

Message
passing transform

Aggregation

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, Peter W. Battaglia: Learning Mesh-Based Simulation with Graph Networks. ICLR 2021
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Lm0

GNN

Linear

Message
passing transform

Aggregation

Focuses on local features if number of layers is small

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, Peter W. Battaglia: Learning Mesh-Based Simulation with Graph Networks. ICLR 2021
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Speeding up computations:

Models fit for physical problems
Physics informed learning: promises and challenges

Lm0

CNNs FNO GNN

Strenght: local features Strenght: global features Strenght: generic geometry
Weakness: regular grid Weakness: regular grid Weakness: Mesh sensitive
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Speeding up computations:
Models fit for physical problems

Physics informed learning: promises and challenges G N N
S
@ Tnterior

RANS simulation of injector Thermal diffusion Poisson Equation 2

1) Akkari N, Casenave F, Daniel T, Ryckelynck D. Data-Targeted Prior Distribution for Variational AutoEncoder. Fluids. 2021; 6(10):343. https://doi.org/10.3390/fluids6100343
2) Matthieu Nastorg, Michele Alessandro Bucci, Thibault Faney, Jean-Marc Gratien, Guillaume Charpiat, Marc Schoenauer An Implicit GNN Solver for Poisson-like problems.
ArXiv 2023, 10.48550/ARXIV.2302.10891
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RANS simulation of injector Thermal diffusion Poisson Equation 2

1) Akkari N, Casenave F, Daniel T, Ryckelynck D. Data-Targeted Prior Distribution for Variational AutoEncoder. Fluids. 2021; 6(10):343. https://doi.org/10.3390/fluids6100343
2) Matthieu Nastorg, Michele Alessandro Bucci, Thibault Faney, Jean-Marc Gratien, Guillaume Charpiat, Marc Schoenauer An Implicit GNN Solver for Poisson-like problems.
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Speeding up computations:

Models fit for physical problems
Physics informed learning: promises and challenges

Lm0

- Sparse linear systems can easily be solved using legacy linear solvers (at a very small cpu
cost)

- Non sparse non linear systems make the perfect use case due to time and cpu cost...

* ... but by definition the data is scarce because long to simulate

*  We need to bring forward inductive bias: Physical statistical learning
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Speeding up computations:
Models fit for physical problems
Physics informed learning: promises and challenges
Lm0

Physics (simulation) Statistical learning
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Models fit for physical problems
Physics informed learning: promises and challenges

Lm0

Physics (simulation) Statistical learning

Used for certification Can't certify
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Speeding up computations:

Models fit for physical problems

Physics informed learning: promises and challenges

Lm0

More physics

More data

PINN

PINO

PIGNNs

FNO

GNNs
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Physics informed learning: promises and challenges

Input Output Reference
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Input Output Reference

Ldata

FNO, GNN
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Speeding up computations:

Models fit for physical problems
Physics informed learning: promises and challenges

Lm0

*  FNO and GNNs are not relying on physics

*  PINOs and Physics informed GNNs are (usually) trained using numerical method ...

« ... that rely on strong hypothesis that might not be verified
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Speeding up computations:
Models fit for physical problems
Physics informed learning: promises and challenges
Lm0

Soft constraint using
empirical sampling
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Speeding up computations:
Models fit for physical problems
Physics informed learning: promises and challenges
Lm0

Soft constraint using
empirical sampling

FNO and
variants

Soft constraint using
numerical methods

Regular grid
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Speeding up computations:
Models fit for physical problems
Physics informed learning: promises and challenges
Lm0

Soft constraint using
empirical sampling

FNO and Reqular arid Soft constraint using
variants 9 9 numerical methods
GNN Soft constraint using

numerical methods
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Speeding up computations:
Models fit for physical problems
Physics informed learning: promises and challenges
Lm0

Soft constraint using
empirical sampling

FNO and Reqular arid Soft constraint using
variants 9 9 numerical methods
GNN Soft constraint using

numerical methods

Can only be used for industrial design suggestion but not validation
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Speeding up computations:

Models fit for physical problems
Physics informed learning: promises and challenges

What is an industrial problem:

HPC Benchmark Models - OpenRadioss - Confluence
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Speeding up computations:

Models fit for physical problems
Physics informed learning: promises and challenges

What is an industrial problem:

Number of parameters? Where is the regular grid?

HPC Benchmark Models - OpenRadioss - Confluence
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Conclusions

* Current models are able to take a physical problem as a whole
*  Some models are able to take physical non linearities such as contact into account
* (Non Linear) Statistical learning could prevent using costly Newton iterations
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Conclusions

* Current models are able to take a physical problem as a whole
*  Some models are able to take physical non linearities such as contact into account
* (Non Linear) Statistical learning could prevent using costly Newton iterations

* Physics informed learning limits the amount of data needed by adding inductive bias
*  We are still dependant of the numerical method for solving the physics
* Real use cases are still out of reach.
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

w

- Simulator =
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Performance metrics

(W,D,H) <

Optimization with respect
to quality criterion
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

- Simulator =

Fields

Q) b

Optimization with respect
to quality criterion

|
(u,0)
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel

I,
Parametric design Non Parametric design
Simplifies the problem More general
Can be tackled with a limited number of ~ Needs a large number of simulations
simulations
Any classical metamodel can be used Specific metamodels that can take a

geometry as an input

What defines a (statistical) physical problem?
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Thankfully, a standard for physical problems already exists:

CFD General Notation System

CGNS.
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
Lm0

Thankfully, a standard for physical problems already exists:

CFD General Notation System

CGNS.

We made an implementation with commodities for machine learning
frameworks

Already compatible with multiple open source readers.
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel

Lm0

Implementation of a datamodel tailored for Al and
ML learning of physics problems

Features

* Based on CGNS for physical data (standard, widely used,
compact binary files)

* Functions to handle data

* Formalize ML problems
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Implementation of a datamodel tailored for Al and
ML learning of physics problems

Features

* Based on CGNS for physical data (standard, widely used,
compact binary files)

* Functions to handle data

* Formalize ML problems

Common DataModel

+ Data centric view

* Enables streamlined workflows involving different libraries
+ Standardization: share and reuse data produced by others
* Human readable (ascii or paraview compatible files)

* Heterogeneous data
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel

Lm0

Implementation of a datamodel tailored for Al and
ML learning of physics problems

Features

* Based on CGNS for physical data (standard, widely used,
compact binary files)

* Functions to handle data

* Formalize ML problems

Common DataModel

+ Data centric view

* Enables streamlined workflows involving different libraries
» Standardization: share and reuse data produced by others
* Human readable (ascii or paraview compatible files)

* Heterogeneous data

& GitLab

~% {)ANACONDA

CONDA-FORGE

Read the Docs

gitlab.com/drti/plaid
conda-forge/plaid
plaid-lib.readthedocs.io
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

Probleme Physique Données physiques PLAID model

* Maillage dataset/

|-- samples
|-- sample_000
|-- meshes
|--mesh_000.cgns
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

Probleme Physique Données physiques PLAID model

* Maillage dataset/

-- sample_000
|-- meshes
|--mesh_000.cgns
|--mesh_001.cgns
|
E

-mesh_xxx.cgns

-- sample_001

-- sample_xxx
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

Probleme Physique Données physiques PLAID model

* Maillage dataset/
* Champs scalaires/vectoriels |-- samples
-- sample_000
|-- meshes

|--mesh_000.cgns
|--mesh_001.cgns
|
E

-mesh_xxx.cgns

-- sample_001

-- sample_xxx
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

Probleme Physique Données physiques PLAID model

* Maillage ‘ . dataset/
» Champs scalaires/vectoriels |-- samples
e Scalaires -- sample_000

-- meshes
|--mesh_000.cgns
|--mesh_001.cgns
|
|--mesh_xxx.cgns

-- scalars.csv
-- sample_001
-- sample_xxx
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

Probleme Physique Données physiques PLAID model

* Maillage ‘ . dataset/

» Champs scalaires/vectoriels |-- samples

* Scalaires -- sample_000
-- meshes

* Conditions limites -mesh_000.cgns

E
|--mesh_001.cgns
|

-mesh_xxx.cgns

-- scalars.csv
-- sample_001
-- sample_xxx
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

Probleme Physique Données physiques PLAID model

* Maillage ‘ . dataset/
» Champs scalaires/vectoriels -- samples
* Scalaires -- sample_000

-- meshes
-mesh_000.cgns

 Conditions limites -
|--mesh_001.cgns
I

-mesh_xxx.cgns

I
|
I
|
Données probleme }

-- scalars.csv
T -- sample_001
 Identification input/output
« Split train/test -- sample_xxx

-- problem_definition
|-- problem_info.yaml
|-- split.csv
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Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel
I,

Probleme Physique Données physiques PLAID model

* Maillage ‘ . dataset/
» Champs scalaires/vectoriels -- samples
* Scalaires -- sample_000

-- meshes
-mesh_000.cgns

 Conditions limites -
|--mesh_001.cgns
|
|_

-mesh_xxx.cgns

-- scalars.csv
e . . -- sample_001
 Identification input/output
« Split train/test -- sample_xxx

|
|
|
|
|
I
Données probleme I
|
|
|
|
|

-- problem_definition
|-- problem_info.yaml
|-- split.csv

71 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

§ SAFRAN

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran



Speed up design via non parametric design

Parametric vs non parametric
PLAID: Physics Learning Al Datamodel

Lm0

2D structural mechanics with

226402 °
EVP constitutive law + 702 samples (various splits)
- ®0O

Geometry and scalar « 297 MB
0
L.
l:ifi"e.oz

parameters

zenodo.org/records/10124594
huggingface.co/datasets/PLAID-datasets/Tensile2d

Tensile2d

2D steady Navier-Stokes

Geometry and scalar :()sog;amples (various splits) ODbLv1.0
| . parameters :
W zenodo.org/records/12515084 +2
L mm—— huggingface.co/datasets/PLAID-datasets/AirfRANS_original variants

3D steady Navier-Stokes

* 1200 samples (various splits) ‘@ ® @
parameters © SGB

Geometry and scalar

Rotor37

zenodo.org/records/10149830
huggingface.co/datasets/PLAID-datasets/Rotor37
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Conclusions

* Non parametric optimization is made possible when cheap simulation exists ( or good
surrogates)

* In non parametric design Design is simpler but exploration and testing is more
challenging

* On top of an existing standard: we built a library aiming to streamline physics informed
learning problems

*  We provide open-source datasets to probe statistical methods methods
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