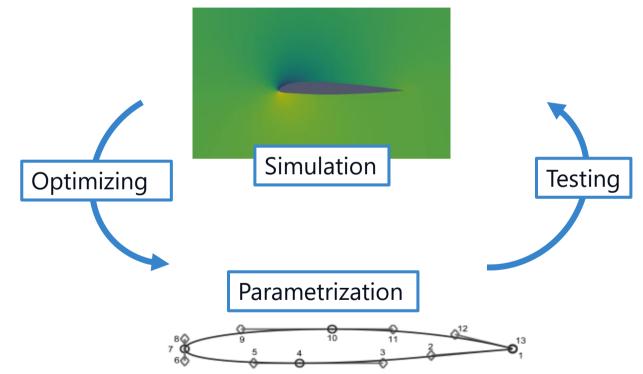
Physical informed learning: stakes in an industrial setting

21st November 2024

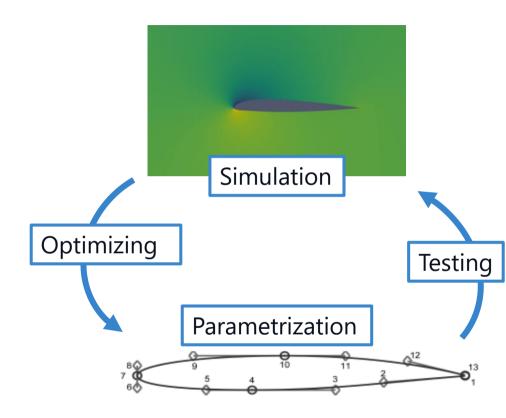
William PIAT

Introduction

Conception is still lengthy process:

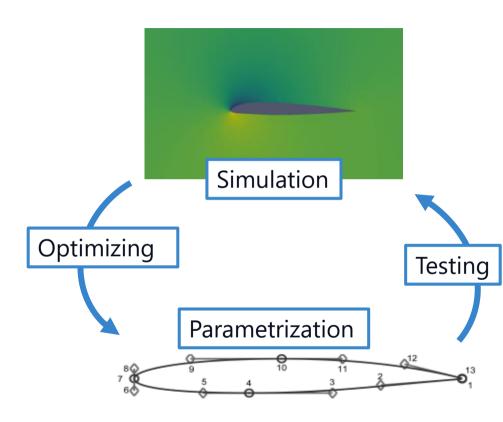


Two main ways for speeding up design:



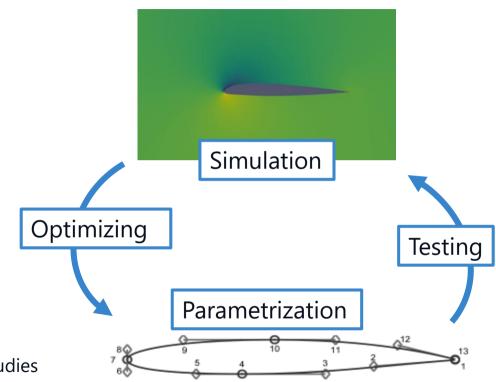
Two main ways for speeding up design:

- Accelerate simulation:
 - Use surrogates (Statistical models)



Two main ways for speeding up design:

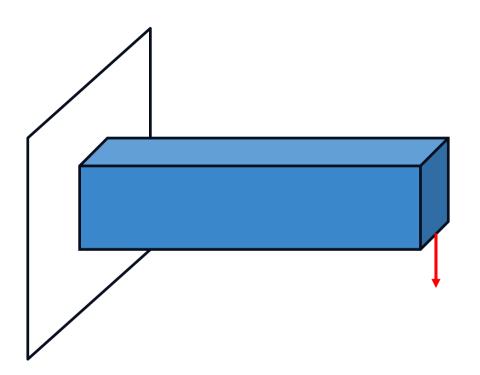
- Accelerate simulation:
 - Use surrogates (Statistical models)

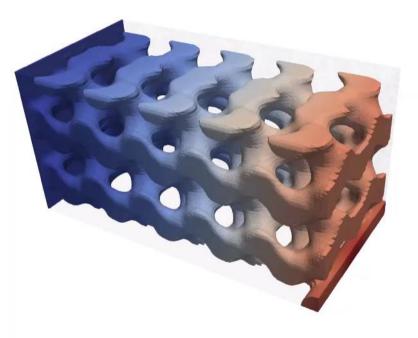


- Set free from parametrization:
 - Make geometry changes non parametric
 - Have a generic datamodel for physical studies

Non parametric design taken to the extreme: topology optimisation

1) Nardoni, C., Danan, D., Mang, C., Bordeu, F., Cortial, J. (2022). A R&D Software Platform for Shape and Topology Optimization Using Body-Fitted Meshes. In: Sevilla, R., Perotto, S., Morgan, K. (eds) Mesh Generation and Adaptation. SEMA SIMAI Springer Series, vol 30. Springer, Cham. <u>https://doi.org/10.1007/978-3-030-92540-6_2</u>





1) https://openpisco.irt-systemx.fr/

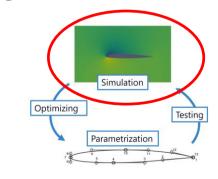
9 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

02 Speeding up computation

03 Non parametric design optimization

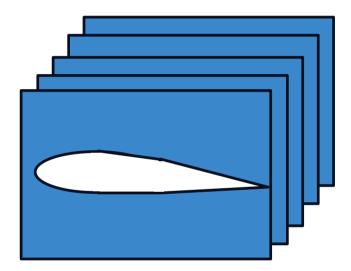
- Models fit for physical problems
- Physics informed learning: promises and challenges

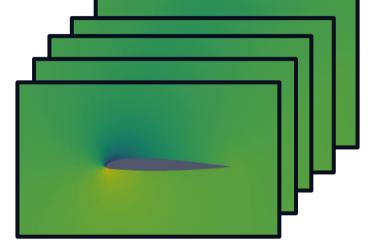
- Models fit for physical problems
- Physics informed learning: promises and challenges



- Models fit for physical problems
- Physics informed learning: promises and challenges

Models fit for physical problems Physics informed learning: promises and challenges

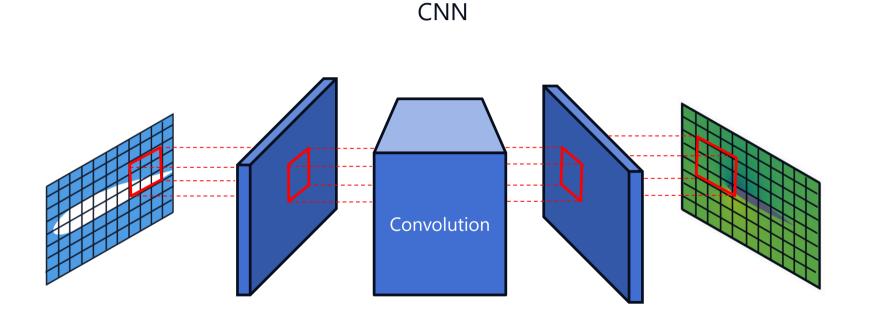




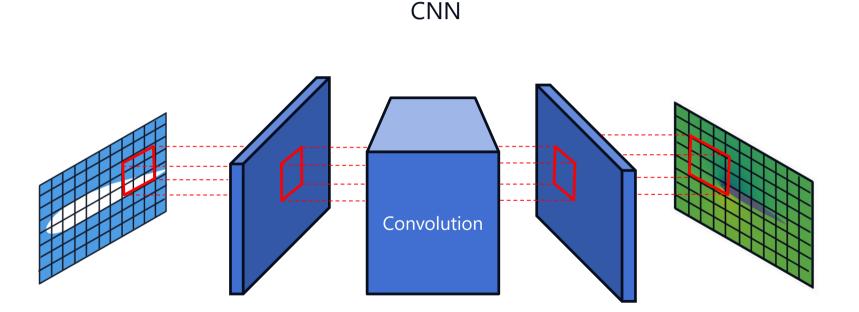
Inputs

Outputs

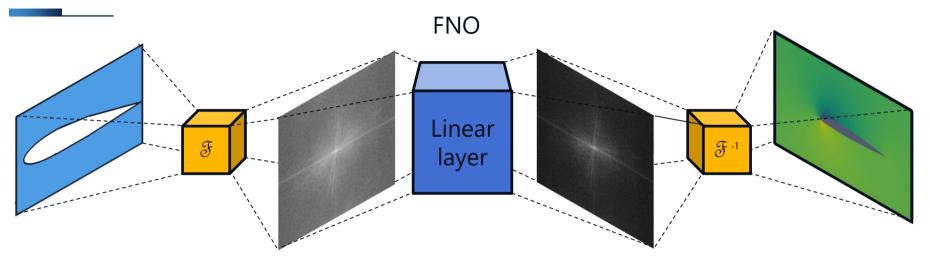
High dimensional inputs and outputs



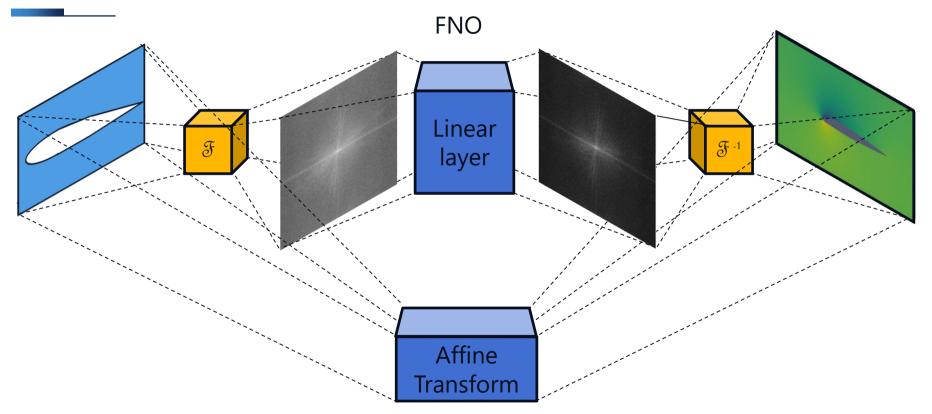
Models fit for physical problems Physics informed learning: promises and challenges

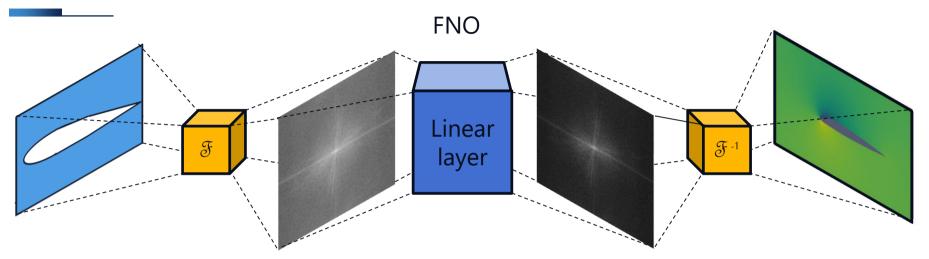


Focuses on local features if number of layers is small



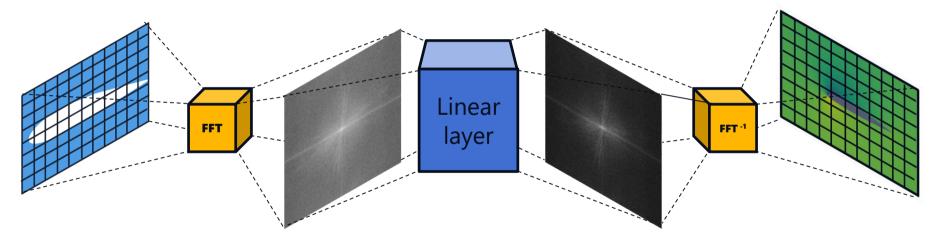
Models fit for physical problems Physics informed learning: promises and challenges





Models fit for physical problems Physics informed learning: promises and challenges

Real FNO

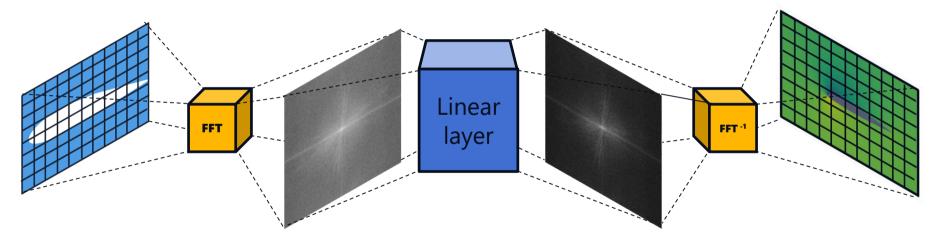


Kovachki, Nikola B., Zong-Yi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart and Anima Anandkumar. "Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs." J. Mach. Learn. Res. 24 (2023): 89:1-89:97.

20 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

Models fit for physical problems Physics informed learning: promises and challenges

Real FNO

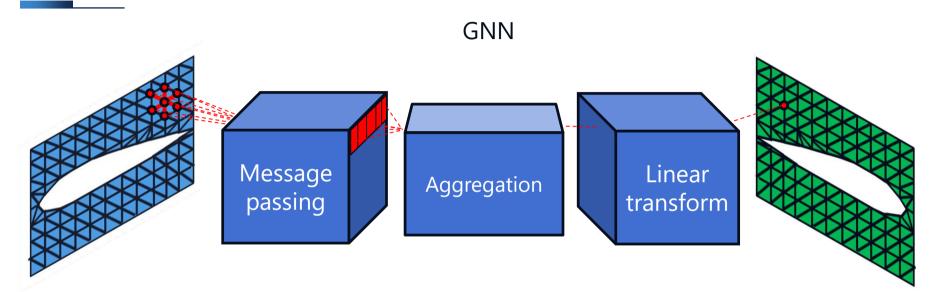


Focuses on global features

Kovachki, Nikola B., Zong-Yi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart and Anima Anandkumar. "Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs." J. Mach. Learn. Res. 24 (2023): 89:1-89:97.

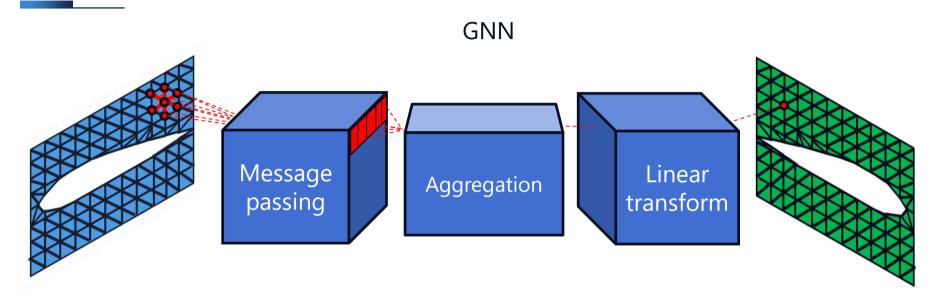
21 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

Models fit for physical problems Physics informed learning: promises and challenges



Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, Peter W. Battaglia: Learning Mesh-Based Simulation with Graph Networks. ICLR 2021

Models fit for physical problems Physics informed learning: promises and challenges

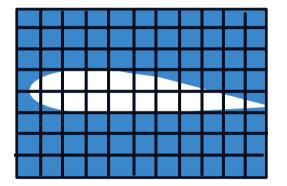


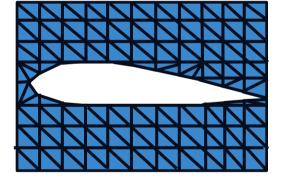
Focuses on local features if number of layers is small

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, Peter W. Battaglia: Learning Mesh-Based Simulation with Graph Networks. ICLR 2021

Models fit for physical problems Physics informed learning: promises and challenges

CNNs



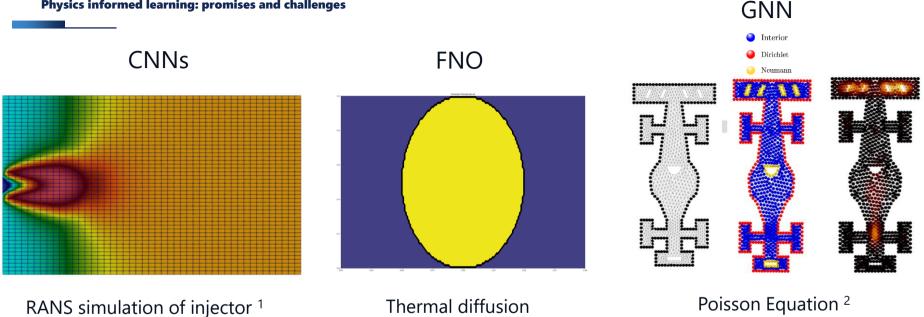


Strenght: local features Weakness: regular grid Strenght: global features Weakness: regular grid

Strenght: generic geometry Weakness: Mesh sensitive

24 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

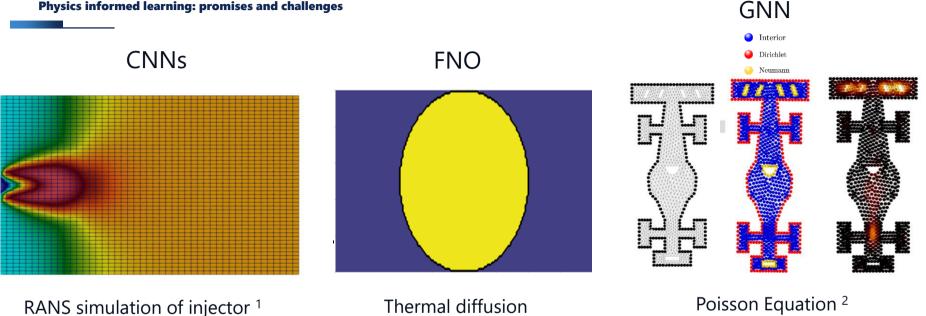
Models fit for physical problems Physics informed learning: promises and challenges



1) Akkari N, Casenave F, Daniel T, Ryckelynck D. Data-Targeted Prior Distribution for Variational AutoEncoder. *Fluids*. 2021; 6(10):343. <u>https://doi.org/10.3390/fluids6100343</u> 2) Matthieu Nastorg, Michele Alessandro Bucci, Thibault Faney, Jean-Marc Gratien, Guillaume Charpiat, Marc Schoenauer An Implicit GNN Solver for Poisson-like problems. ArXiv 2023, 10.48550/ARXIV.2302.10891

25 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

Models fit for physical problems Physics informed learning: promises and challenges



1) Akkari N, Casenave F, Daniel T, Ryckelynck D. Data-Targeted Prior Distribution for Variational AutoEncoder. *Fluids*. 2021; 6(10):343. <u>https://doi.org/10.3390/fluids6100343</u> 2) Matthieu Nastorg, Michele Alessandro Bucci, Thibault Faney, Jean-Marc Gratien, Guillaume Charpiat, Marc Schoenauer An Implicit GNN Solver for Poisson-like problems. ArXiv 2023, 10.48550/ARXIV.2302.10891

26 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

Models fit for physical problems Physics informed learning: promises and challenges

• **Sparse linear systems** can easily be solved using legacy linear solvers (at a very small cpu cost)

- **Sparse linear systems** can easily be solved using legacy linear solvers (at a very small cpu cost)
- Non sparse non linear systems make the perfect use case due to time and cpu cost...

- **Sparse linear systems** can easily be solved using legacy linear solvers (at a very small cpu cost)
- Non sparse non linear systems make the perfect use case due to time and cpu cost...
- ... but by definition the data is **scarce because long to simulate**

- **Sparse linear systems** can easily be solved using legacy linear solvers (at a very small cpu cost)
- Non sparse non linear systems make the perfect use case due to time and cpu cost...
- ... but by definition the data is **scarce because long to simulate**
- We need to bring forward **inductive bias**: Physical statistical learning

- Models fit for physical problems
- Physics informed learning: promises and challenges

Models fit for physical problems Physics informed learning: promises and challenges

Physics (simulation)

Statistical learning

Physics (simulation)	Statistical learning
Used for certification	Can't certify

Physics (simulation)	Statistical learning
Used for certification	Can't certify
Usually believed in extrapolation	No guarantees outside training set

Physics (simulation)	Statistical learning
Used for certification	Can't certify
Usually believed in extrapolation	No guarantees outside training set
Slow to compute	Runs usually faster than simulation

Models fit for physical problems Physics informed learning: promises and challenges

Physics (simulation)	Statistical learning
Used for certification	Can't certify
Usually believed in extrapolation	No guarantees outside training set
Slow to compute	Runs usually faster than simulation

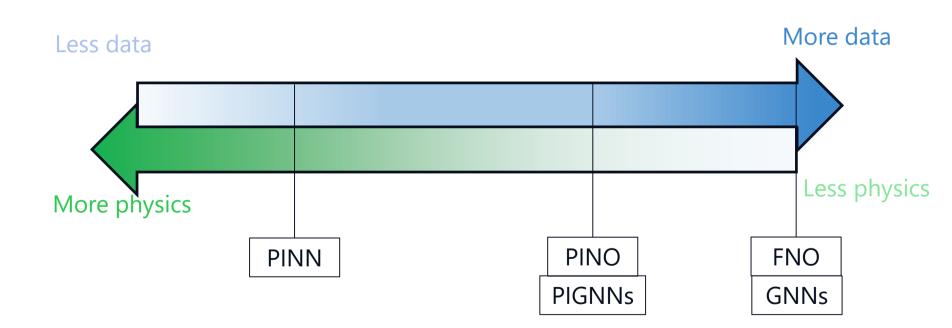
Is there a happy medium ?

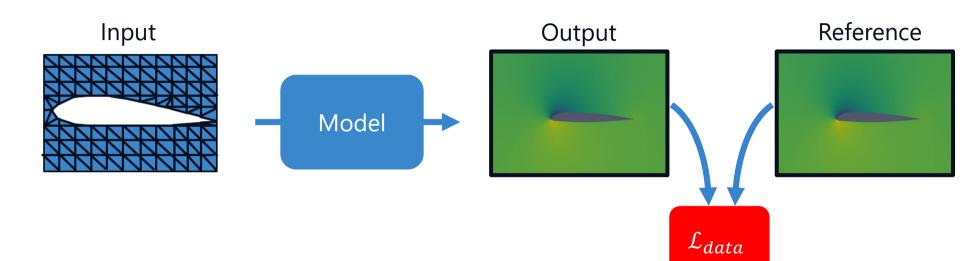
Models fit for physical problems Physics informed learning: promises and challenges

Physics (simulation)	Statistical learning
Used for certification	Can't certify
Usually believed in extrapolation	No guarantees outside training set
Slow to compute	Runs usually faster than simulation

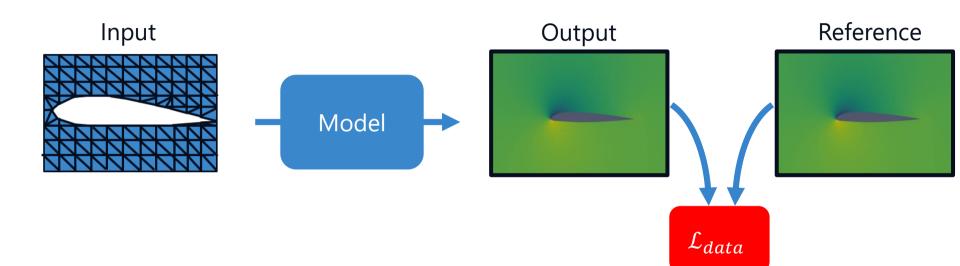
Is there a happy medium ?

Models fit for physical problems Physics informed learning: promises and challenges



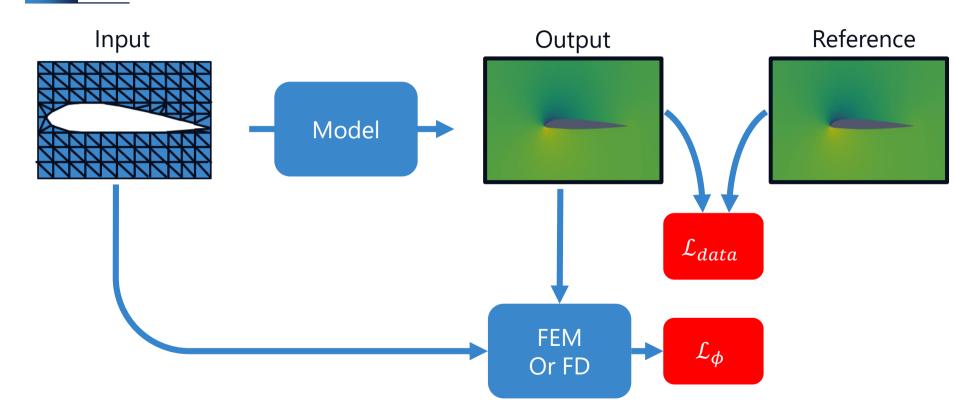


Models fit for physical problems Physics informed learning: promises and challenges

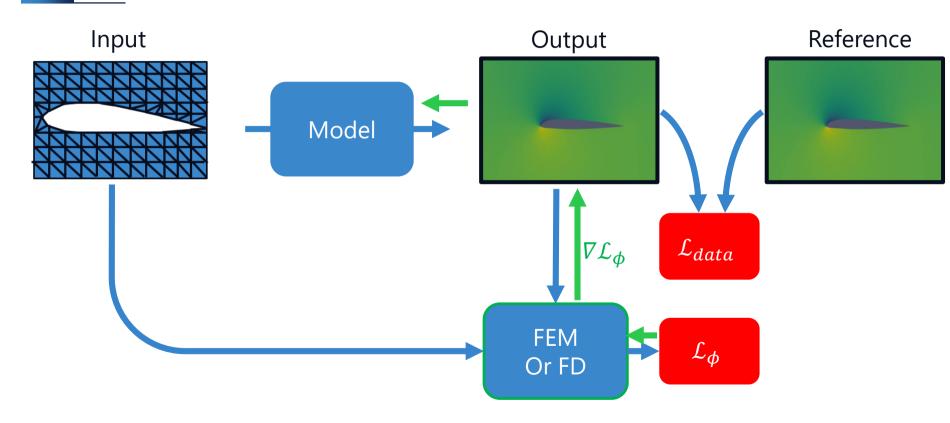


FNO, GNN

Models fit for physical problems Physics informed learning: promises and challenges



Models fit for physical problems Physics informed learning: promises and challenges



42 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

- FNO and GNNs are not relying on physics
- PINOs and Physics informed GNNs are (usually) trained using numerical method ...

- FNO and GNNs are not relying on physics
- PINOs and Physics informed GNNs are (usually) trained using numerical method ...
- ... that rely on strong hypothesis that might not be verified

Technology	Extrapolation on unknown cases	Respects physics	Remarks	
PINNs	No	Soft constraint using empirical sampling	Can't be applied to multiple problems	

Technology	Extrapolation on unknown cases	Respects physics	Remarks	
PINNs	No	Soft constraint using empirical sampling	Can't be applied to multiple problems	
FNO and variants	Regular grid	Soft constraint using numerical methods	Fourier base is canonical in some physical problems	

Models fit for physical problems Physics informed learning: promises and challenges

Technology	Extrapolation on unknown cases	Respects physics	Remarks	
PINNs	No	Soft constraint using empirical sampling	Can't be applied to multiple problems	
FNO and variants	Regular grid	Soft constraint using numerical methods	Fourier base is canonical in some physical problems	
GNN	Graph	Soft constraint using numerical methods	Allows to work on more diverse geometries	

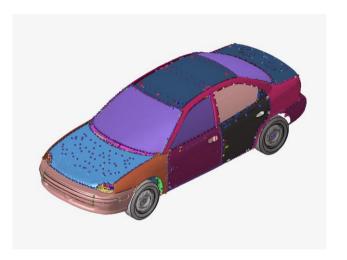
Models fit for physical problems Physics informed learning: promises and challenges

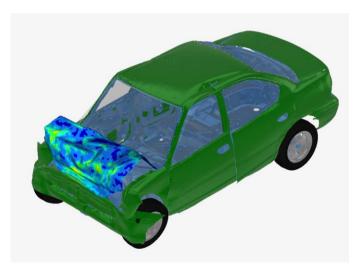
Technology	Extrapolation on unknown cases	Respects physics	Remarks	
PINNs	No	Soft constraint using empirical sampling	Can't be applied to multiple problems	
FNO and variants	Regular grid	Soft constraint using numerical methods	Fourier base is canonical in some physical problems	
GNN	Graph	Soft constraint using numerical methods	Allows to work on more diverse geometries	

Can only be used for industrial design suggestion but not validation

Models fit for physical problems Physics informed learning: promises and challenges

What is an industrial problem:

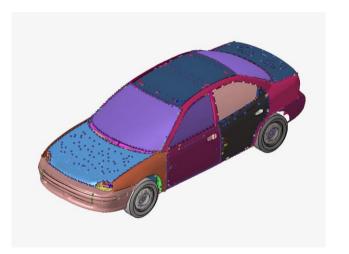


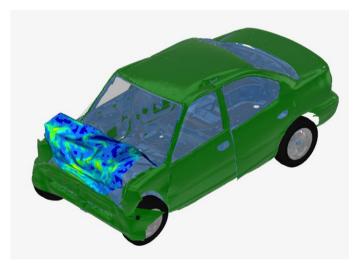


HPC Benchmark Models - OpenRadioss - Confluence

Models fit for physical problems Physics informed learning: promises and challenges

What is an industrial problem:





Number of parameters? Where is the regular grid?

HPC Benchmark Models - OpenRadioss - Confluence

Conclusions

- Current models are able to take a physical problem as a **whole**
- Some models are able to take physical non linearities such as contact into account
- (Non Linear) Statistical learning **could prevent using costly Newton iterations**

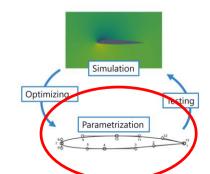
Conclusions

- Current models are able to take a physical problem as a **whole**
- Some models are able to take physical non linearities such as contact into account
- (Non Linear) Statistical learning could prevent using costly Newton iterations

- Physics informed learning **limits the amount of data needed** by adding **inductive bias**
- We are still dependant of the numerical method for solving the physics
- Real use cases are still out of reach.

Chapter 3 Speed up design via non parametric design

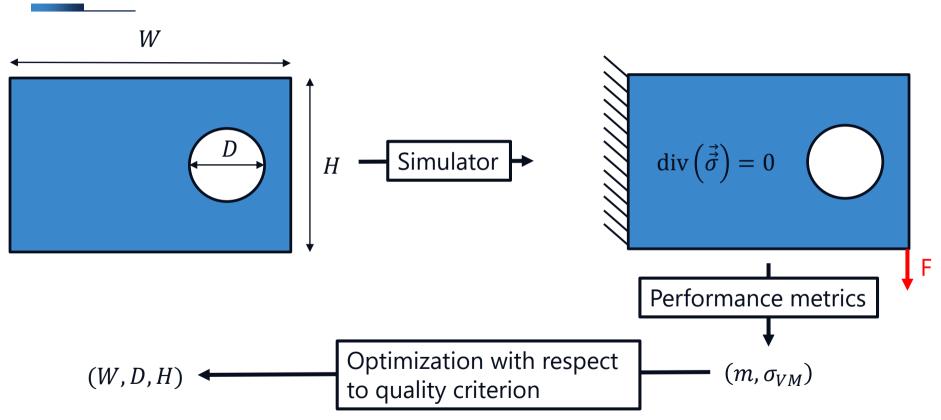
- Parametric vs non parametric
- PLAID: Physics Learning AI Datamodel



Chapter 3 Speed up design via non parametric design

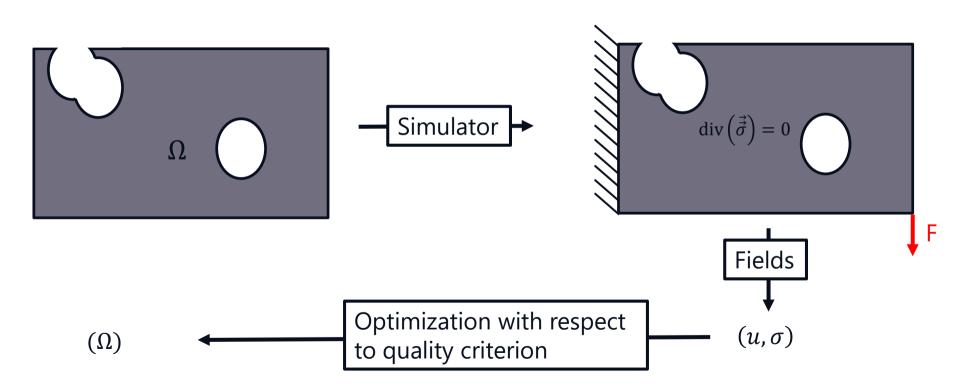
- Parametric vs non parametric
- PLAID: Physics Learning AI Datamodel

Parametric vs non parametric PLAID: Physics Learning AI Datamodel



55 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

Parametric vs non parametric PLAID: Physics Learning AI Datamodel



56 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Parametric design	Non Parametric design	
Simplifies the problem	More general	
Can be tackled with a limited number of simulations	Needs a large number of simulations	
Any classical metamodel can be used	Specific metamodels that can take a geometry as an input	

What defines a (statistical) physical problem?

Chapter 3 Speed up design via non parametric design

- Parametric vs non parametric
- PLAID: Physics Learning AI Datamodel

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Thankfully, a standard for physical problems already exists:

CFD General Notation System

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Thankfully, a standard for physical problems already exists:

CFD General Notation System

We made an implementation with commodities for machine learning frameworks

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Thankfully, a standard for physical problems already exists:

CFD General Notation System

We made an implementation with commodities for machine learning frameworks

Already compatible with multiple open source readers.

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Implementation of a datamodel tailored for AI and ML learning of physics problems

Features

- Based on CGNS for physical data (standard, widely used, compact binary files)
- Functions to handle data
- Formalize ML problems

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Implementation of a datamodel tailored for AI and ML learning of physics problems

Features

- Based on CGNS for physical data (standard, widely used, compact binary files)
- Functions to handle data
- Formalize **ML** problems

Common DataModel

- Data centric view
- Enables streamlined workflows involving different libraries
- Standardization: share and reuse data produced by others
- Human readable (ascii or paraview compatible files)
- Heterogeneous data

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Implementation of a datamodel tailored for AI and ML learning of physics problems

Features

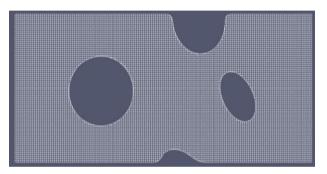
- Based on CGNS for physical data (standard, widely used, compact binary files)
- Functions to handle data
- Formalize **ML** problems

Common DataModel

- Data centric view
- Enables streamlined workflows involving different libraries
- Standardization: share and reuse data produced by others
- Human readable (ascii or paraview compatible files)
- Heterogeneous data

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Problème Physique



Données physiques

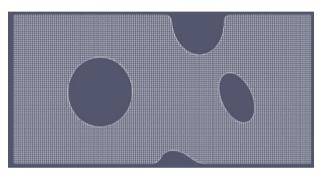
• Maillage

PLAID model

dataset/ |-- samples |-- sample_000 |-- meshes |--mesh_000.cgns

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

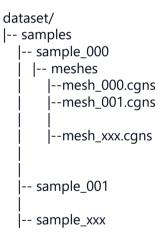
Problème Physique



Données physiques

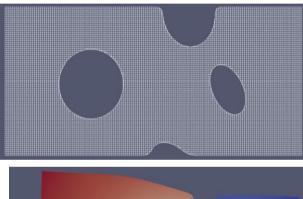
• Maillage

PLAID model



Parametric vs non parametric PLAID: Physics Learning AI Datamodel

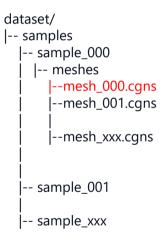
Problème Physique



Données physiques

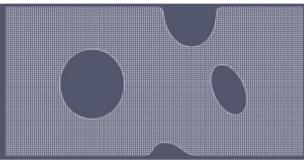
- Maillage
- Champs scalaires/vectoriels

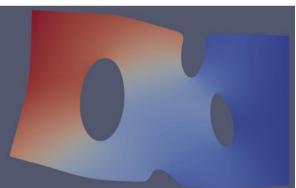
PLAID model



Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Problème Physique

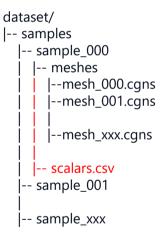




Données physiques

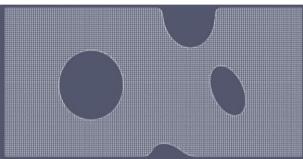
- Maillage
- Champs scalaires/vectoriels
- Scalaires

PLAID model



Parametric vs non parametric PLAID: Physics Learning AI Datamodel

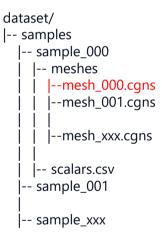
Problème Physique



Données physiques

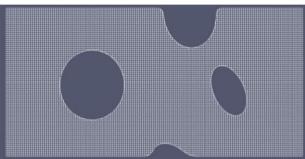
- Maillage
- Champs scalaires/vectoriels
- Scalaires
- Conditions limites

PLAID model



Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Problème Physique



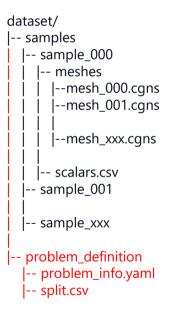
Données physiques

- Maillage
- Champs scalaires/vectoriels
- Scalaires
- Conditions limites

Données problème

- Identification input/output
- Split train/test

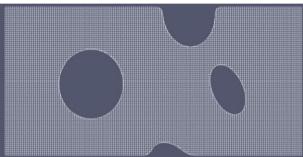
PLAID model



70 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

Parametric vs non parametric PLAID: Physics Learning AI Datamodel

Problème Physique



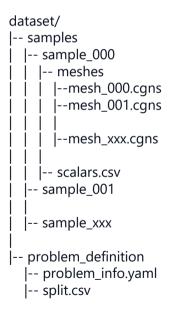
Données physiques

- Maillage
- Champs scalaires/vectoriels
- Scalaires
- Conditions limites

Données problème

- Identification input/output
- Split train/test

PLAID model



71 DST / Safran SA / 21st of November 2024 / Physical informed learning: stakes from an industrial perspective

Parametric vs non parametric **PLAID: Physics Learning AI Datamodel**

Name	Illustration	Description	Samples and volume	License
Tensile2d	 2D structural mechanics with EVP constitutive law Geometry and scalar parameters 	 702 samples (various splits) 297 MB 	BY SA	
TENSILEZU	σ ₁₁ 100 200 2.4e+02	zenodo.org/records/10 ⁻ huggingface.co/dataset	124594 ss/PLAID-datasets/Tensile2	d
AirfRANS	 2D steady Navier-Stokes Geometry and scalar parameters 	 1000 samples (various splits) 1.5 GB 	ODbLv1.0	
	zenodo.org/records/12! huggingface.co/dataset	515084 cs/PLAID-datasets/AirfRAN	+ 2 S_original variants	
Rotor37	 3D steady Navier-Stokes Geometry and scalar parameters	 1200 samples (various splits) 5 GB 	EY SA	
	zenodo.org/records/10 ⁻ huggingface.co/dataset	149830 s/PLAID-datasets/Rotor37	Safran SAFRAN	

- Non parametric optimization is made possible when cheap simulation exists (or good surrogates)
- In non parametric design Design is simpler but exploration and testing is more challenging

- On top of an existing standard: we built a library aiming to streamline physics informed learning problems
- We provide **open-source** datasets to probe statistical methods methods

POWERED BY TRUST

74 Department / Company / Date (menu "Insert / Header and footer" – "Insertion / En-tête et pied de page") This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

