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Taking advantage of always increasing computational resources, the
importance of simulation keeps increasing.

It is now completely integrated in most of the decision making
processes of our society.

Thus, simulation has not only to be descriptive, but needs to be
predictive.

In the following, let us focus on a system S, whose design (dimensions,
materials, initial conditions...) is characterized by a vector x ∈ X, and
whose behavior is analyzed through the response function y(x) ∈ Y.
To predict the value of y(x), we assume we have access to a
parametric simulator, ysim.
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An increasing role for simulation in our society



ytrue(xtrue) =?
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Uncertainty quantification to generate trust



ysim(xmes;βnom
,νnom) = 0.42367589235124

ytrue(xtrue) = 0.42367589235124?

∣ June 6th , 2019 ∣ PAGE 2/36

Uncertainty quantification to generate trust



ysim(xmes;βnom,νnom + εν) = 0.42367589235124
ytrue(xtrue) ∈ [0.42367589235 ±10−11]?

⇒ numerical uncertainties (finite arithmetic, compilation, resolution
schemes,...),
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Uncertainty quantification to generate trust



ysim(xmes;βnom + εβ ,νnom + εν) = 0.42367589235124
ytrue(xtrue) ∈ [0.4236 ± 10−4]?

⇒ numerical uncertainties (finite arithmetic, compilation, resolution
schemes,...),

⇒ parametric uncertainties (physical parameters, code thresholds...),
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Uncertainty quantification to generate trust



(ysim)(xmes + εmes
x ;βnom + εβ ,νnom + εν) = 0.42367589235124

ytrue(xtrue) ∈ [0.42 ± 10−2]?

⇒ numerical uncertainties (finite arithmetic, compilation, resolution
schemes,...),

⇒ parametric uncertainties (physical parameters, code thresholds...),

⇒ experimental uncertainties (construction tolerance, boundary and
initial conditions...).
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Uncertainty quantification to generate trust



(ysim + εmod)(xmes + εmes
x ;βnom + εβ,νnom + εν) = 0.42367589235124

ytrue(xtrue) ∈ [0.4 ± 10−1]?

⇒ numerical uncertainties (finite arithmetic, compilation, resolution
schemes,...),

⇒ parametric uncertainties (physical parameters, code thresholds...),

⇒ experimental uncertainties (construction tolerance, boundary and
initial conditions...).

⇒ model uncertainties (simplifications, missing phenomena...).
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Uncertainty quantification to generate trust



(ysim + εmod)(xmes + εmes
x ;βnom + εβ,νnom + εν) = 0.42367589235124

ytrue(xtrue) ∈ [0.4 ± 10−1]?

⇒ numerical uncertainties (finite arithmetic, compilation, resolution
schemes,...),

⇒ parametric uncertainties (physical parameters, code thresholds...),

⇒ experimental uncertainties (construction tolerance, boundary and
initial conditions...).

⇒ model uncertainties (simplifications, missing phenomena...).

To be predictive, simulation needs to be able to take into account
the different sources of uncertainty !
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Uncertainty quantification to generate trust



ytrue(xtrue) = (ysim + εmod)(xmes + εmes
x ;βnom + εβ,νnom + εν)

= (ymes + εmes
y )(xmes + εmes

x )
1 Sensitivity analysis : find the elements of x, β and ν that play the

most important roles on the variability of ysim(x;β,ν).
2 Code validation : given a set of (noisy) experimental measurements,

identify εβ, εν and εmod.

3 Robust optimization : find x⋆ (using stochastic simulator ysim) such
that C(ytrue(x⋆)) is minimal, with C a cost function.

4 System certification : guarantee (using stochastic simulator ysim)
that the risk that ytrue(x⋆) exceeds S is lower than α (with a
satisfying confidence).
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Some challenges of VV-UQ approaches



To solve the former problems, we generally need a huge number of
code evaluations.

Hence, when confronted to very costly simulators, the code response
has to be replaced by a surrogate model (or metamodel).

ysim = ymeta + εmeta.

⇒ Warning ! Replacing the true code by its surrogate introduces an
other source of uncertainty that also needs to be taken into account.
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The crucial role of statistical learning in VV-UQ
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5 Conclusion
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Outline



We consider a function y(x1, . . . , xd) in the space H = L2
µ(X,Rdy) of

square-integrable functions with values in R
dy defined on

X = X1 ×⋯×Xd equipped with a probability measure µ = µ1 ⊗⋯⊗µd.

The inner product and the norm in H are respectively written ⟨⋅, ⋅⟩
H

and ∥⋅∥
H
, such that for all u, v ∈ H,

⟨u, v⟩
H
= ∫

X

u(x)T v(x)dµ(x), ∥u∥2
H
= ⟨u,u⟩

H
.

Each evaluation of y is supposed to be time consuming.

In the following, X = [−1,1]d, dµ(x) = dx
2d
.
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Theoretical framework



Objective: based on X = (x(n), y(x(n)))Nn=1 (constraint on the maximal
budget), construct a predictor ŷ such that ∥ŷ − y∥L2 is minimal.

Classical formalism

The code is modeled by a black-box code (point-wise approach),
whose response is supposed to be square integrable over X.

The points xn, 1 ≤ n ≤ N , generally correspond to a set of iid
elements or to a deterministic space filling design.

Metamodelling tools often rely on the distance between training and
prediction points.
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Reference framework for statistical learning in
computer experiment



If X = [0,1]d, x1,x2 ∼ U(X), Z = ∥x1 − x2∥22,

E [Z] = d

6
→d→+∞ +∞, δ2(Z) = Var(Z)

E [Z]2 =
1.4

d
→d→+∞ 0.

Problem 1

When the dimension of the input space increases, all points are far the
ones from the others.
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The curse of dimensionality



If X = [−1,1]d, Xskin = ([−1,−0.99] ∪ [0.99,1])d , x ∼ U(X),
Volume(X) = 2d, Volume(Xskin) = 2d − (2 × 0.99)d.
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Problem 2

When the dimension of the input space increases, an important portion of
the predictions have to be made in extrapolation.
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The curse of dimensionality



Problematic : which (non-space filling) strategy can be proposed to
improve the prediction capacity of ŷ when d increases ?

Direction 1

Complex codes often aggregate several ”black-box codes”
⇒ how to integrate information about the code inner structure to improve
the prediction capacity of ŷ ?
⇒ how to adapt the sampling strategy to this inner structure, while
integrating potentially different computational costs for each code?

⇒ Gaussian process regression (GPR) for nested networks.
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The curse of dimensionality



Problematic : which (non-space filling) strategy can be proposed to
improve the prediction capacity of ŷ when d increases ?

Direction 2

When the code inner structure is hidden, or when it is not possible to
separately call each code of the network, how to generalize the Principal
Component Analysis to dimensions higher than 2 to identify low
dimensional projection subspaces ?

⇒ Tree based composed functions (TBCF).
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The curse of dimensionality
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Outline



We assume that the code associated with x↦ y(x) is constituted of
a series of nested codes.

The inner structure is supposed to be known (without loop), and the
intermediary results are available.

The intermediary quantities may be scalar or vectors.

It is possible to launch separately each code of the network.

Figure: Example of a code network

∣ June 6th , 2019 ∣ PAGE 13/36

Existence of a code structure



Each function yi is considered as a particular realization of a GP Yi.

Each GP is conditioned by a series of Ni code evaluations, and we

write µi + εi = Yi∣(x(ni)
i , yi(x(ni)

i ))Ni

ni=1
, with εi the (non-stationary)

centered GP characterizing the metamodel uncertainty.

Figure: Replacement of the code functions by their GP surrogates
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GP approximation of the code network



The combination of Gaussian processes is not Gaussian. Let Ynest∣X
be the nested random process that aggregates all these conditioned
GPs.

Using sampling techniques (such as MCS), it is possible to propagate
the surrogate uncertainties through the GP network to compute an
empirical estimate of the mean of Ynest∣X based on M independent
realizations of each GP, written {Ynest(ωm)∣X , 1 ≤m ≤M}.
It comes:

ŷ = 1

M

M

∑
m=1

Ynest(ωm)∣X .
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Construction of the predictor



Until now, each GP Yi is supposed to be conditioned by the
evaluations of yi in the points x(ni), 1 ≤ ni ≤ Ni.

The choice of these Ni points is generally motivated by the fact that
the pointwise error between yi and its GP approximation is controlled
by the minimax criterion CmM (up to a normalization of the inputs),
which writes:

CmM(x(1), . . . ,x(Ni)) =max
x∈Xi

min
1≤ni≤Ni

∥x − x(ni)∥
2
.

Hence, the points x(ni), 1 ≤ ni ≤ Ni, most of the time correspond to
space-filling designs (including or not constraints on the projections
in subspaces of Xi, see [Perrin and Cannamela, 2017]).
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Design of experiments and error control



To reduce the prediction error on the final output, a first idea consists
in minimizing the errors in each node of the network.

Hence, the objective is to add new points in the empty regions of the
different input spaces.

x1

x2 y2

y1
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Code networks add errors (⇒ local enrichment)



To reduce the prediction error on the final output, a first idea consists
in minimizing the errors in each node of the network.

Hence, the objective is to add new points in the empty regions of the
different input spaces.

x1

x2 y2

y1

To avoid useless code evaluations, the surrogate models before
enrichment can be used to generate a huge number of points that are
likely to be in the output spaces at the different nodes. Clustering
methods can then allow selecting interesting batches of points for the
enrichment.
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Code networks add errors (⇒ local enrichment)



As an alternative, sequential designs based on a stepwise uncertainty
reduction (SUR) can be proposed [Marque-Pucheu et al., 2018]:

If the codes cannot be run separately → Chained I-optimal,

xnew = argmin
x∈X

∫
X

V(Ynest(x′)∣X ∪x)dx′,
If the codes can be run separately → Best I-optimal,

(inew, x̃new
inew) = argmax

x̃i∈X̃i, i≤d

1

τi
×∫

X

[V (Ynest(x′)∣X ) −V (Ynest(x′)∣X ∪ x̃i)]dx′,
where

(x̃i, X̃i) ∶= {(xi,Xi) if we are at a leaf of the code network,

((xi, yj),Xi × µj (Xj)) if we are at a node,

and τi is the computational cost of code i.
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Code networks compensate errors (⇒ global
enrichment)



xnew = argmin
x∈X

E [V(Ynest(x′)∣X ∪x)] , x′ ∼ U(X).

/ There is no reason for x ↦ E [V(Ynest(x′)∣X ∪ x)] to be convex.

/ As Ynest is not Gaussian, there is a priori no closed-form expression for
E [V(Ynest(x′)∣X ∪ x)].
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Remarks on the optimization problem



xnew = argmin
x∈X

E [V(Y lin
nest(x′)∣X ∪x)] , x′ ∼ U(X).

/ There is no reason for x ↦ E [V(Ynest(x′)∣X ∪ x)] to be convex.

, Y lin
nest is the Gaussian approximation of Ynest based on a series of Taylor

expansions, such that :

(µi+1 + εi+1)(xi+1, (µi + εi)(xi))
≈ µi+1(xi+1, µi(xi)) + ∂µi+1

∂yi
(xi+1, µi(xi))εi(xi) + εi+1(xi+1, µi(xi)).

Its variance is therefore explicitly known, and the former optimization
problem becomes a classical robust optimization problem.

, No code evaluation is required to compute E [V(Y lin
nest(x′)∣X ∪ x)] for

any x ∈ X.
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Remarks on the optimization problem
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y(x) = y3(y2(y1(x1))).
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Analytical example (1/2)



Sequential vs clustering-based designs Distribution (Best)
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Analytical example (2/2)



Physical problem

y(x) = y2(x2, y1(x1)) : coupling of a detonation code with a structural
dynamics code ⇒ functional outputs.

(a) Tank (b) First code (c) Second code

”Blind-box” ↔ the code inner structure is not taken into account.

∣ June 6th , 2019 ∣ PAGE 22/36

Industrial example (1/3)



(x1)1 Radius of the explosive charge (m)

(x1)2 Temporal dilatation parameter (-)

(x1)3 Shock magnitude parameter (-)

(x1)4 Attenuation parameter (-)

y1 Pressure generated by the shock wave
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Industrial example (2/3)



Prediction accuracy along the sequential designs:
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Industrial example (3/3)
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Outline



⇒ Let T be a given dimension tree over D = {1, . . . , d}.
⇒ Let FT be the set of functions written as a series of compositions of

functions defined on subspaces of X controlled by T . For instance:

y(x) = f{1,2,3,4,5}(f{1,2,3}(x1, f{2,3}(x2, x3)), f{4,5}(x4, x5))

⇒ ŷ is the (empirical) projection (using X ) of y on FT .
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Formalism



The dimension tree can be adapted to the code structure if it is
known.

Expert judgments can be used to aggregate inputs.

The development of data-driven construction of dimension tree
remains an open question.

∣ June 6th , 2019 ∣ PAGE 27/36

Choice of the dimension tree



y(x) = f{1,2,3,4,5}(f{1,2,3}(x1, f{2,3}(x2, x3)), f{4,5}(x4, x5))

In theory, the set FT can gather any functions under the constraint
that y is in H = L2

µ(X,Rdy).
In practice, as a compromise between complexity and error control,
we focus on the composition of linear functions :

f{i,j,k}(xi, xj , xk) =
ri,j,k

∑
ℓ=1

cℓh
(i)
ℓ
(xi)h(j)ℓ

(xj)h(k)ℓ
(xk),

where (h(i)
ℓ

, h
(j)
ℓ

, h
(k)
ℓ
) are “well-chosen” functions.
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Choice of the projection space



y(x) = f{1,2,3,4,5}(f{1,2,3}(x1, f{2,3}(x2, x3)), f{4,5}(x4, x5))
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Leaves to root active learning strategy
[Nouy, 2019]



y(x) = f{1,2,3,4,5}(f{1,2,3}(x1, f{2,3}(x2, x3)), f{4,5}(x4, x5))

For each leaf i (here, i ∈ {1,2,3,4,5}) of the tree, we introduce an
approximation space Ĥi (Legendre polynomials for instance). We then
search Ui as the ri-dimensional principal subspace of Ĥi for y.
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Leaves to root active learning strategy
[Nouy, 2019]



y(x) = f{1,2,3,4,5}(f{1,2,3}(x1, f{2,3}(x2, x3)), f{4,5}(x4, x5))

For each leaf i (here, i ∈ {1,2,3,4,5}) of the tree, we introduce an
approximation space Ĥi (Legendre polynomials for instance). We then
search Ui as the ri-dimensional principal subspace of Ĥi for y.

For each intermediary node α (here, α ∈ {{1,2,3} ,{2,3} ,{4,5}}), we
introduce the approximation space Ĥα = ⊗β∈S(α)Uβ, where S(α)
denotes the “sons” of α. We then search Uα as the rα-dimensional
principal subspace of Ĥα for y.
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Leaves to root active learning strategy
[Nouy, 2019]



y(x) = f{1,2,3,4,5}(f{1,2,3}(x1, f{2,3}(x2, x3)), f{4,5}(x4, x5))

For each leaf i (here, i ∈ {1,2,3,4,5}) of the tree, we introduce an
approximation space Ĥi (Legendre polynomials for instance). We then
search Ui as the ri-dimensional principal subspace of Ĥi for y.

For each intermediary node α (here, α ∈ {{1,2,3} ,{2,3} ,{4,5}}), we
introduce the approximation space Ĥα = ⊗β∈S(α)Uβ, where S(α)
denotes the “sons” of α. We then search Uα as the rα-dimensional
principal subspace of Ĥα for y.

The final approximation ŷ is given by the projection of y onto the
tensor product space of the principal subspaces:

ŷ = ΠUD
y, UD = ⊗β∈S({1,...,d})Uβ.
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Leaves to root active learning strategy
[Nouy, 2019]



For each node α ⊂ {1, . . . , d} (which can be a leaf or not), the
approximation of the rα-dimensional principal subspace is based on the
identification of y with a (bivariate) function z of the groups of variables
xα and xαc , which admits the following singular value decomposition:

y(x) = z(xα,xαc) = +∞∑
i=1

√
λiu

α
i (xα)uαc

i (xαc), λi+1 ≤ λi.

(Simplified) algorithm

Let x
(1)
αc , . . . ,x

(Mα)
αc be Mα values of xαc chosen at random.

Let vα1 , . . . , v
α
Qα

be an orthonormal basis of approximation space Vα.

Let USV T be the SVD-decomposition of the (Qα ×Mα) matrix Ŵ

gathering the LS coefficients of the projection of xα ↦ z(xα,x
(m)
αc )

on vα1 , . . . , v
α
Qα

using Pα (well-chosen) evaluations of y.

Uα ≈ Ûα ∶= span{∑Qα

q=1(U)q,1vαq , . . . ,∑Qα

q=1(U)q,rαvαq }.
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Practical identification of the principal subspaces
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(e) Goal-oriented design for TBCF

Focusing on the leaves, we notice an important difference in the
positions where the code is evaluated between GPR and TBCF.

, Even if d is high, the different approximations are only made in small
dimensional spaces.

, The algorithm is quick and stable as it is only based on a series of
SVD.
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Goal-oriented designs vs. space-filling designs



We consider the Borehole function:

y(x) = 2πx3(x4 − x6)
(x2 − log(x1))(1 + 2x7x3

(x2−log(x1))x2

1
x8

) + x3

x5

x1 ∼N (0.100,0.0162),
x2 ∼N (7.71,1.01),
x3 ∼ U(6.31 × 104,1.16 × 105),
x4 ∼ U(9.90 × 102,1.11 × 103),
x5 ∼ U(631,116),
x6 ∼ U(700,820),
x7 ∼ U(1120,1680),
x8 ∼ U(9.86 × 103,1.20 × 104).
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Analytical example



Number of evaluations IC90% for ∥y − ŷ∥L2
/ ∥y∥L2

88 [2.4 × 10−2 − 2.7 × 10−2]
308 [1.4 × 10−3 − 1.4 × 10−2]
660 [1.8 × 10−5 − 4.9 × 10−5]
1144 [2.9 × 10−6 − 3.5 × 10−6]
1760 [5.2 × 10−7 − 6.1 × 10−7]
2508 [9.0 × 10−8 − 1.3 × 10−7]
3388 [5.7 × 10−8 − 9.2 × 10−8]

Figure: TCBF for the approximation of the Borehole function. The approximation
spaces associated with the leaves are spanned by polynomial functions of degrees
less than 10.
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Analytical example
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Outline



There are still many challenges for statistical learning in a small data
context (N ∼ 10 − 100d).
In particular, we believe that important challenges lie in the
introduction of effective sparse representations.

By exploiting information about the structure of the functions to be
approximated, nested GPR and TCBF are two methods that can allow
us to construct such representations.

Working on hybrid methods, which can take advantage of both
techniques, remains on open subject.
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Conclusion
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