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Modern molecular biotechnology is one of the main providers of 

large-scale real-life datasets (and related questions)

• OMICS data: systematic global 

measurements of a biological sample 

– Genomics (all DNA in a sample), also 

epigenomics (all states of DNA, 

methylation, histones, 3D conformation)

– Transcriptomics (all RNA in a sample)

– Proteomics (all proteins in a sample)

• Main technology : sequencing, mass-

spectrometry

• OMICs profile of a biological sample –

typically from 103 to 106 features (can be 

much more), p>>n problematics



Streptomyces coelicolor

Bacillus halodurans Ercherichia coli 

Fusobacterium nucleatum

7 cluster structure of bacterial genomes
(Gorban A., Popova T., Zinovyev A. Physica A, 2005)

Visualization

of random

walk along 

the genome



Stereotypical structure of codon frequency distribution 

in fast-growing bacteria and eukaryotes
(Carbone, Zinovyev, Képès, Bioinformatics, 2003; 

Carbone, Képès, Zinovyev, Mol Biol Evol, 2005)

Genes of class I

(most of)

Genes of class II

(higly expressed)

Genes of class III

(unusual)

Genes of class IV

(hydrophobic

proteins)



Geometry of the cancer genome copy number profiles

160 breast and ovary cancer cell lines, principal component analysis of SNPs 
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Molecular cancer subtypes

4000 cases of colorectal cancer transcriptomes
(from Guinney et al, Nat Med, 2015)



Single cell RNASeq data

• Measurements are not limited by availability of samples

• Each biological sample can be represented as a cloud of 

points in multidimensional space

• Importance of data exploratory/geometrical methods



Tirosh et al, 2015, Science

Examples from cancer biology

8000 cells

45000 cells

Aiziz et al, 2018, Cell



Single cell data cartography of Planarian 
(Plass et al, 2018)



Mouse organogenesis at single cell level

(~2 millions of cells, Cao et al, 2019, Nature)

tSNE, Louvain clustering of kNN graph



Understanding cell fate decisions

1) visualize landscape

2) Introduce intrinsic coordinates 

of the landscape

La Manno et al, 2019, Nature



Using mathematics to understand the 

single cell trajectories



Unsupervised analysis of omics data

Non-linear branching data approximators

(e.g., principal trees)

One factor, linear

response

Many factors, linear response

Non-linear manifold learning



Mixture of independent sources as

the simplest representation of regulation
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Principal component analysis (PCA):

«Orthogonality constraint» (just mean-square approximation)

Non-negative matrix factorization (NMF):

aij and Activities should be non-negative. Sparsity effect.

Independent Component Analysis (ICA):

Assumption of statistical independence of Factor activities

m << n



Independent Component Analysis 

in the gene space

IC1

IC2

IC is a vector (direction) in the gene space

IC3
Bladder cancer transcriptome data

(Stransky, 2007), projection from

81-dimensional space
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Stabilized ICA in the gene space generalizes

well for transcriptomic data
Biton et al, 2014; Kairov et al, 2017; Cantini et al, 2019



Elastic principal graphs (ElPiGraph)
(Gorban&Zinovyev,2007; Zinovyev&Mirkes, 2013; Gorban&Zinovyev, 2010)

book  Gorban, Kegl, Wunch, Zinovyev, LNSC, 2008)

• History: 

– principal curves were introduced by Trevor Hastie in 

1989: “Principal curves are smooth one-

dimensional curves that pass through the middle of 

a p-dimensional data set, providing a nonlinear 

summary of the data. They are nonparametric, and 

their shape is suggested by the data”

– principal graphs were introduced by Kegl and 

Kryzak in 2002 for finding skeleton graph of 

handwritten characters (not a general approach)

– elastic principal graphs based on graph 

grammars were introduced in 2007 (Gorban and 

Zinovyev, Applied Mathematics Letters, 2007)

– currently principal graphs are used in the analysis 

of single cell data as a part of MONOCLE 2 

(reverse graph embedding method). Still based on 

kNN graph and require drastic dimension reduction.

– Implementations in MATLAB, R, Python, Scala, 

Java

https://github.com/sysbio-curie/ElPiGraph.R

https://github.com/sysbio-curie/ElPiGraph.M

https://github.com/sysbio-curie/ElPiGraph.P

2008 2010

Principal graphs 

and manifolds 

chapter

2000

https://github.com/sysbio-curie/ElPiGraph.R
https://github.com/sysbio-curie/ElPiGraph.M
https://github.com/sysbio-curie/ElPiGraph.P


Elastic principal graphs (ElPiGraph)
(Gorban&Zinovyev,2007; Zinovyev&Mirkes, 2013; 

Gorban&Zinovyev, 2010; Albergante et al, 2018; Chen et al, 2019)

book  Gorban, Kegl, Wunch, Zinovyev, LNSC, 2008)

Penalty on total length:

Penalty on deviation

from harmonicity:



Topological grammars



Robust principal graphs
A.N. Gorban, E.M. Mirkes, A. Zinovyev. 

Robust principal graphs for data approximation. 2018. 

“Global” non-robust version
“Local” robust version

sees only close data points

PQSQ (Piece-wise Sub-Quadratic) 

approach to robustness 
Gorban, Mirkes, Zinovyev, Neural Networks, 2016



Advanced features of ElPiGraph
(Albergante et al, 2018)



Principal graphs ensembles and 

consensus principal graph



Local intrinsic dimensionality



Simplicial complexes, Principal cubic complexes?
(Gorban, Sumner, Zinovyev, AML, 2007; 

Gorban&Zinovyev, Handbook of ML; 2009)



When number of features >> number of objects

When the intrinsic dimension of the data > log2(number of objects)

• Vastness of high-dimensional spaces, 2100 = 1030

• Machine learning, based on the notion of point neighbourhood, fails

• Model non-uniqueness increases

“Curse of dimensionality”
Origin: Bellman, R.E. (1957). Dynamic programming. Princeton University Press, Princeton, NJ.



“Standard” measures of intrinsic 

dimensionality

The correlation dimension

● Count the number of points at a distance less 

than a radius r

Steeper decline = lower dimension

d = − log n2 − log n1

logr2 − logr1

Does not work well 

for high-dimensions

(because of the curse

and non-uniformity)



Do we deal with curse of dimensionality 

in genomics data?
Three datasets of ~2000 samples

From Eraslan et al, Nat Comm, 2019

Single cell data:



Do we deal with curse of dimensionality 

in genomics data?

• May be not, may be yes:

From Kairov et al, BMC Genomics, 2017

230 ~ 108

220 ~ 106

210 ~ 103



Blessing of dimensionality?



Counterintuitive properties of 

high-dimensional data spaces

• Any two random vectors are (almost) 

orthogonal

• Any basis of random n vectors is 

(almost) orthogonal

• (Almost) any point is linearly separable 

from all other points

• Can it be “blessing”?



Blessing of dimensionality:

measure concentration phenomena

Counterintuitive properties of 

high-dimensional distributions

Uniformly sampled ball in RN observed in R2

Does not matter what distribution, it will look normal in any

2D or 3D projection (law of big numbers)



Counterintuitive properties of 

high-dimensional distributions

• Concentration of the volume of a ball near its surface

1

1-e

Fraction of volume in vicinity of a surface = 

e = 0.01, n = 2, f = 0.0199

e = 0.01, n = 3, f = 0.0297

e = 0.01, n = 10, f = 0.0956

e = 0.01, n = 100, f = 0.6340

e = 0.01, n = 500, f = 0.9934

f =



• Concentration of the volume of a ball near its surface

1

1-e

1

1-e

N=2 N>>1

This is a “mental image” not projection!



How to quantify separability?

separation plane

unseparable

fraction p



Fisher discriminant analysis

Computed in explicit formula, without iterations!



Intrinsic or effective data dimensionality

from the point of view of separability

From Albergante et al, IJCNN proceedings, 2019, arxiv:1901.06328



How to quantify dimensionality from separability?
Albergante et al, IJCNN proceedings, 2019, arxiv:1901.06328

1. We first make our dataset comparable to a multidimensional

sphere Sn-1 in Rn (centering, whitening + scaling data vectors)

2. For each point x we compute how many other points y ≠ x

have (x,y)>a, this gives p(a)

3. For uniform distribution on a sphere

4. From here we can find 

x

1-a

where W is Lambert function (solution of equation y = xex )



How it works for uniformly sampled spheres



Unseparable fraction distribution

Uniform data distribution

(n=30)

Some real single cell data distribution

(Formal n=20000, PCA-estimated n=28)



● Synthetic manifolds (M. Hein and J.-Y. Audibert, 2005)



The estimation worked surprisingly well

on a benchmark when noise was added



Mutation data (BRCA), microcluster structure



Single cell RNASeq data 

(planarian transcriptome)
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