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Talk overview

= Turbulence modeling: why and how
= Using data for predicting turbulence?
= Quantifying modeling uncertainties

= Conclusions and future trends
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Turbulence modeling: why and how
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Turbulence mOdenng: Why Direct numerical simulation (DNS)

o

2 ," - 1 |‘ i ?i. » ;
= Turbulent flows omnipresent in Engineering sciences . i‘ti,ﬁ y }'“ kI '."5"‘;?
5Pt L SR o, 5 Y= S @
* Wide range of spatial and temporal scales i};;;ﬁ“\\; o N ) ;;‘;
* Key parameter: Reynolds number (ratio of inertia to viscous forces) T &\ p. ALE
= Navier-Stokes equations contain all the necessary information:
* DNS (computationally intractable for most practical cases) Large Eddy Simulation (I:)ES)

* Alternatives: hierarchy of approximations, depending the amount of resolved vs
modelled scales

LES—> (RANS/LES)>RANS

= More resolved scales = higher cost (especially for wall-bounded flow)
and sensitivity to numerical errors & boundary conditions

* Not suitable for routine use in industry

= More modeled scales = lower cost, more flow-dependent, and uncertain
turbulence models

RANS: workhorse for CFD simulations in engineering

"™\ SCIENCES Visualization of turbulent boundary layer
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Turbulence modeling: how

= Reynolds averaged Navier-Stokes (RANS) equations:

* Define a suitable averaging operator (modeling choice)

* Decompose field quantities into average and fluctuating parts

u=u+u'; p=p+p'
1
ou b; = anlsotropy tensor 2 must be modelled
a— +u-Vu= ——Vp +V- (VVu —u'u' k = turbulent kinetic energy
t P

!

Reynolds stresses

Reynolds stresses need a constitutive law: a turbulence model

1. Look for a mathematical formulation (model structure)

2. Look for closure coefficients (model parameters)
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Turbulence modeling: how

= Model structure classically derived from
physical arguments

* Integrates physical principles such as objectivity,
symmetries, realizability

* Relies on more or less crude modeling assumptions

= Model parameters calibrated for simple flows and
from uncertain data

= Rich zoology of models of different complexities

= No universally accepted model,

no universal parameters

Pressure distribution along a wing section from various
™ SCIENCES RANS models (lines) and experiments (symbols).
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Talk overview

= Using data for predicting turbulence?
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Using data for predicting turbulence?

= Rapidly increasing mass of high-fidelity flow field data
* Turbulence-resolving simulations
* Complete flow-field description, low residual uncertainty
* Limited to simple configurations, low to moderate Reynolds numbers
*  Flow measurements (highly resolved PIV, stress-sensitive films, MEMS):

* More complex configurations, high Reynolds numbers

* Incomplete and possibly noisy data

= Use data to inform lower-fidelity RANS model

* Inform parameters without changing model structure (model calibration)

* Inform model structure (model identification)

= Challenges:

Much smaller (but well resolved) amount of training data than in typical IA applications
* Use of possibly incomplete and noisy data
* Estimate predictive uncertainties

&)
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Using data for predicting turbulence?

Training Functional

data for b;; basis
= General framework

* No longer a « universal » model, but a model that generalises as well as Turbulence model CFD-free
possible to a class of flows bi=b;; (F1,F,...Fy) training

* Choose a functional basis
*  Enforce physical constraints (whenever possible) CFD flow solver

* Train against data

Output Qols Validation

= Two training strategies

* CFD-free training

*  © Inexpensive (manipulate analytical expressions) Training data

for ob q Functional
*  ® Requires high-fidelity, low noise data for turbulent quantities Of OBSEIVE basis

Qol
*  ® Does not warrant exact energy conservation -

* @ May lead to non robust models CFD flow solver

* CFD-driven training CFD-driven

«  © May use virtually any data (mean flow and turbulent quantities) Turbulence model training

b;=bj;(F1,F5,...F,)
«  © May ensure energy conservation A

¢ © Produces robust models

*  ® Requires the solution of a VERY costly multidimensional optimization problem

Output Qols

Validation
"\ SCIENCES
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Data-driven model discovery: the SparTA algorithm [schmeltzer, bwight, Cinnella, Frac 2020]

= SpaRTA = SPArse Regression of Turbulent-stress Anisotropy
* Open-box machine learning algorithm
* CFD-free training
* Uses a pre-defined library of explicit functions for learning

= Start with linear eddy viscosity model (here, Menter’s k — w SST)

j koY

+ transport equations for k and w

1 v,
T, =2k(bl.j+§6ij); b.=—-—+8§ ve = f(k, )

- Not suitable for flows separation, streamline curvature, strong gradients, etc.

= |nternal additive corrections of Reynolds stress anisotropy (biAj) and turbulent transport equations (R):

p=-Yig @
if ki

Data-augmented SpaRTA model

= Learn biAj and R from high-fidelity data

) ;
SORBONNE Y€ g’Alembert 10
UNIVE RSITE X Institut Jean le Rond d'Alembert



Data-driven model discovery: the SparTA algorithm [schmeitzer, bwight, cinnella, FTac 2020]

DATA

k-corrective-frozen-RANS

= Create a database of “exact” DNS/LES data for biAj and R Hish fidel
. . i '8 - elity Solve w-transport equation and compute
* Frozen approach: passively solve turbulent equations simulation data residual of k-transport equation R
using high-fidelity mean-flow and Reynolds-stress data LES/DNS 2.1
A
= Discovery step: use sparse elastic-net regression to [U“’“"?J’J

identify suitable model structures [”3=RJ

= |nference step: use ridge regularized least mean square

. . . . . Build library of
regression to identify coefficients

candidate functions Model inference for | :

' Model selection using

3.1) sparse regression (3.2) CFD (3.3) ;
= Run competing models through the CFD code and select 'cbf,c,{/ \@bA,eRJ/ [M,EQ,Mg)‘ §
best model § ' ’ I
Cross-validation using CFD )
Output
[ Correction model M
SpaRTA workflow (from Schmeltzer et al.)
"\ SCIENCES
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Data-driven model discovery: the SparTA algorithm [schmeitzer, bwight, cinnella, FTac 2020]
" |n practice: we construct b j by using the effective eddy viscosity approach of Pope (JFM, 1975)

o
Assume T;; = T;; (— | and project T;; onto a minimal integrity basis:
ij J\ax: X; ij

Bt = z @Iy, Iy, I3, 14, I)T},
l=1,..,10
For 2D flow, b; depends on three tensor ponnomlaIs of the mean strain rate S;; and rotation ();; +

2 invariants /1—|SU 12, L=1Q; %

ik~ " kj ij mn nm

b(S,.2, )= (1,.1,)8,+e,(1,.1,)(5,2, - 9,5, )+ (11,12)(5%5@——55 S j

ModelR as: R = ZkbR ! where is modelled similarly to b
]

Build libraries of polynomial functions of the invariants
B, = [C, 1y, 15,12,1,115,..] sothat b =Y_; ;00 BT}

with O a vector of coefficients

Find © by solving a regularized (elastic net) regression problem

OUTCOME: sparse data-driven Explicit Algebraic Reynolds-Stress Model (EARSM)
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Results

= Model corrections to k-w SST derived using
LES/DNS data for:

* Periodic 2D-hill flow (PH) at Re=10595 = M)
* Converging-diverging channel (CD) at
Re=12600 = M)
* Curved backward-facing step (CBFS) at
Re=13700 > M®)
= Corrections propagated through the
OPENFOAM open source CFD solver

Data-driven models (including those trained

for PH and CBFS) outperform the baseline
for all cases

ENCES
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PH results for various models at Re=37000
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CFD-driven Spa rTA algorithm [Ben Hassan-Saidi, Cinnella, Grasso 2020]
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Plug generic model into the CFD solver

Collect high-fidelity data for any Qol (e.g., velocity)

Find coefficients by solving the optimization problem :
0" = arg min@llUSparta(G)) _ UHF” + /1”9”1 + O-SA(l _ p)”®”2
Preliminary local sensitivity analysis for reducing problem dimensionality —> 12 parameters

Enforcement of realizability constraints

Optimization based on blackbox python library : CORS algorithm (constrained optimization using response
surfaces)

* Cubic radial basis function surrogate + resampling
* Candidate samples preventing the CFD solver to converge are discarded and resampled

OUTCOME: data-driven Explicit Algebraic Reynolds-Stress Model (EARSM)

Only one step needed (simultaneous discovery and inference)
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Results

= Preliminary results for the PH flow at Re=10595

= Comparison with baseline model and CFD-free SpaRTA models. Optimization based on 75 CFD runs.

3.5 T T T T T T T
CFD-SpaRTA =——
baseline mode| =——
31 LES Breuer = "]
SpaRTAl — =
25 SpaRTA3 =— = _
2 _
15 —
1r _
0.5 -
0 - | |
0 2 4 6 8 10 12

= CFD-driven SpaRTA outperforms the baseline and deliver results comparable to CFD-free SpaRTA

Q SCIENCES
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Talk overview

= Quantifying modeling uncertainties
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Quantifying modeling uncertainties : Bayesian model averaging

= Model identification procedures generally deterministic
* No estimate of predictive uncertainties provided

= Use of Bayesian statistics to infer on model coefficient posterior distributions

* Bayesian inference pictures the relation between data, a priori knowledge and updated knowledge of the
coefficients
p(D|6)

p(0|D) = (D) p(6)

*  Well-informed posteriors are peaked = Maximum A Posteriori (MAP) approximation of the posteriors

= Bayesian model and scenario averaging (BMSA) to account for uncertainties in the choice of model
structure and of training scenarii (geometry and flow conditions)

N K
p(A | M"S):ZZ p(A | Mi’Zk)P(Mi |Zk)P(Sk)
i=1 k=l
with 7= (M, M,,..., M), §=(5,, S,,..., Sx) a set of concurrent models and scenario, respectively.

= The weights are the posterior model probabilities AND scenario probabilities (to be assigned a priori)

SORBONNE Y€ g’Alembert 17
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BMSA: Flow through a compressor cascade

= Prediction of compressible flow through a compressor cascade (NACA65 V103) at off design conditions
= Results based on three models (k — w Wilcox, k — € Launder-Sharma & Spalart-Allmaras)

= Propagation of the 13 boundary layer MAP estimates AND of 3 MAP estimates calibrated against LES data for the
NAVA65 V103 cascade at operating conditions different from prediction ones

Total pressure loss at x/I=1.1

From De Zordo-Banliat et al., C&F, 2020 o
0.6 c—_—
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Total pressure loss field: mean and standard deviation k—w (-===+),

Spalart-Allmaras (- - -)

Q SCIENCES k—g(~=).
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BMSA: Flow through a compressor cascade

» Three formulations for P(S;) were tested

>Consensus based criterion

> Calibration-driven criterion
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Scenario and model probabilities used for BMSA prediction:
k — w Wilcox (white), k — € Launder-Sharma (black), Spalart-Allmaras (grey)

S3

Sy

Probability of scenario

>Operating condition-based criterion

0.4
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Space-dependent Bayesian Model Averaging

= BMSA uses the same weights throughout the flow field = contrary to expert judgment

= Further progress: compute P(M;|D) as a function of space
* Infer model probabilities for each flow region
* |dentify the “best” model (if any) in each region

= Clustered Bayesian Averaging [Yu, 2011]: regression of weights using decision trees

For a new point x;, the average prediction on the ensemble of trees gives the weights of the models.

The final prediction is a space-dependent model average with weights w;

Yfinal = Z W; y;
J
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CBMA: preliminary results

= CBMA of k — w, k — € & Spalart-Allmaras as models. LES as reference data

Data: 300 points CBMA: 1000 trees
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Conclusions

= Model discovery by learning from data represents an attractive opportunity for developing
improved RANS models, customized for reproducing classes of flows

* Encouraging results obtained for a variety of 2D flows, including massively separated flows and
turbomachinery flows

* Work needed for better improving the algorithms and reducing computational cost

= Bayesian inference provides a systematic framework for
* updating coefficients associated to turbulence models,
* selecting or averaging (BMSA) concurrent models

* Providing estimates of confidence intervals

= Work in progress:

* Bayesian formulation of SpaRTA

¢ Combination of concurrent SpaRTA models via BMSA and/or CBMA

th |
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Questions?

[1] Edeling, W.N., Cinnella, P., Dwight, R., Bijl, H., 2014. Bayesian estimates of parameter variability in the k € turbulence model. J Comp
Phys 258 : 73-94.

[2] Edeling, W.N., Cinnella, P., Dwight, R., 2014. Predictive RANS simulations via Bayesian Model-Scenario Averaging. J Comp Phys 275 :
65-91.

[3] Edeling, W.N., Schmeltzer, M., Dwight, R., Cinnella, P., 2018. Bayesian predictions of RANS uncertainties using MAP estimates. AIAA
J. 56(5):2018-2029

[4] Edeling, W.N., laccarino, G., Cinnella, P.,, 2017. Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty. Flow Turb
& Comb 100(3):593-616

[6] Xiao, H., Cinnella, P., 2019. Quantification of model uncertainty in RANS simulations: a review. Progress in Aerospace Sciences 108:
1-31.n

[5] Schmeltzer, M., Dwight, R., Cinnella, P., 2020. Discovery of Algebraic Reynolds-Stress models Using Sparse Symbolic Regression.
Flow Turb & Comb 104:579-603.

[7] De Zordo-Banliat M., Merle X., Dergham X., Cinnella P., 2020. Bayesian model-scenario averaged predictions of compressor cascade
flows under uncertain turbulence models. Comp Fluid 201:104473.
&)

SORBONNE Y€ g’Alembert 23
UNIVE RSITE X Institut Jean le Rond d'Alembert



Bayesian model-scenario averaging (BMSA)

= Let M, be a model structure in set M of m models
= Be z; a calibration dataset taken in a training set Z of s calibration scenarios
= BMSA prediction of the expectancy of Qol A for a new scenario :

E[MZ]:iEE[A'ZJ’MJP(Mi |ZJ)P(ZJ)

i=1 j=1

The scenario of A is NOT in the calibration set Z

E [A 2, M, ]
is the expectancy of A for the new scenario,
under model M; calibrated on dataset z;
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Bayesian model-scenario averaging (BMSA)

= Similarly, the variance of A may be written as:

Var[A|Z:| = zm:ivar[sz,Mi}P(Mi |zj)P(zj)+

| i=l j=1

J

In-model, in-scenari!) variance

22( [A|zj,Mi]—E[A|zj])2P(Ml,|zj)P(zj)+

i=1 ]_

Between-model, in-scenario variance (model error)
§ 2
Z(E[A|Z}—E[A|Z]) P(z.)
=1 ’ ’
|

Between-scenario variance (spread)
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