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Turbulence modeling: why
§ Turbulent flows omnipresent in Engineering sciences

• Wide range of spatial and temporal scales
• Key parameter: Reynolds number (ratio of inertia to viscous forces)

§ Navier-Stokes equations contain all the necessary information:
• DNS (computationally intractable for most practical cases)
• Alternatives: hierarchy of approximations, depending the amount of resolved vs

modelled scales
LESà (RANS/LES)àRANS

§ More resolved scales à higher cost (especially for wall-bounded flow)
and sensitivity to numerical errors & boundary conditions
• Not suitable for routine use in industry

§ More modeled scales à lower cost, more flow-dependent, and uncertain
turbulence models

RANS: workhorse for CFD simulations in engineering

Direct numerical simulation (DNS)

Large Eddy Simulation (LES)

Reynolds-Averaged Navier-Stokes (RANS)

Visualization of turbulent boundary layer
(Mach 3.0) via nano-tracer-based planar laser 
scattering [Ding et al., 2018] 



§ Reynolds averaged Navier-Stokes (RANS) equations:
• Define a suitable averaging operator (modeling choice)

• Decompose field quantities into average and fluctuating parts
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Reynolds stresses need a constitutive law: a turbulence model
1. Look for a mathematical formulation (model structure)
2. Look for closure coefficients (model parameters)

Reynolds stresses
   

u = u+ u ';      p = p + p '

∇⋅u = 0
∂u
∂t

+ u ⋅∇u = − 1
ρ
∇p +∇⋅ ν∇u− u 'u '( )

Turbulence modeling: how

𝜏!" = 𝑢!#𝑢"# = 2𝑘 𝑏!" +
1
3
𝛿!"

bij = anisotropy tensor à must be modelled
k = turbulent kinetic energy



§ Model structure classically derived from 
physical arguments

• Integrates physical principles such as objectivity, 
symmetries, realizability

• Relies on more or less crude modeling assumptions

§ Model parameters calibrated for simple flows and 
from uncertain data

§ Rich zoology of models of different complexities

§ No universally accepted model, 
no universal parameters
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Turbulence modeling: how

Pressure distribution along a wing section from various
RANS models (lines) and experiments (symbols). 
6th AIAA Drag prediction workshop.
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§ Rapidly increasing mass of high-fidelity flow field data
• Turbulence-resolving simulations

• Complete flow-field description, low residual uncertainty

• Limited to simple configurations, low to moderate Reynolds numbers

• Flow measurements (highly resolved PIV, stress-sensitive films, MEMS):
• More complex configurations, high Reynolds numbers
• Incomplete and possibly noisy data

§ Use data to inform lower-fidelity RANS model
• Inform parameters without changing model structure (model calibration)

• Inform model structure (model identification)

§ Challenges:
• Much smaller (but well resolved) amount of training data than in typical IA applications

• Use of possibly incomplete and noisy data

• Estimate predictive uncertainties
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Using data for predicting turbulence?



§ General framework
• No longer a « universal » model, but a model that generalises as well as 

possible to a class of flows
• Choose a functional basis

• Enforce physical constraints (whenever possible)

• Train against data

§ Two training strategies
• CFD-free training

• J Inexpensive (manipulate analytical expressions)

• L Requires high-fidelity, low noise data for turbulent quantities

• L Does not warrant exact energy conservation

• L May lead to non robust models

• CFD-driven training
• J May use virtually any data (mean flow and turbulent quantities)

• J May ensure energy conservation

• J Produces robust models

• L Requires the solution of a VERY costly multidimensional optimization problem

9

Using data for predicting turbulence?

Turbulence model
bij=bij (F1,F2,…Fn)

Training 
data for bij

Functional 
basis

CFD flow solver

Output QoIs

Turbulence model
bij=bij (F1,F2,…Fn)

Training data 
for observed 

QoI

Functional 
basis

CFD flow solver

Output QoIs

CFD-free
training

CFD-driven
training

Validation

Validation



§ SpaRTA = SPArse Regression of Turbulent-stress Anisotropy
• Open-box machine learning algorithm
• CFD-free training
• Uses a pre-defined library of explicit functions for learning

§ Start with linear eddy viscosity model (here, Menter’s 𝑘 − 𝜔 SST)

+ transport equations for 𝑘 and 𝜔
à Not suitable for flows separation, streamline curvature, strong gradients, etc.

§ Internal additive corrections of Reynolds stress anisotropy (𝑏!"$ ) and turbulent transport equations (𝑅):

§ Learn 𝑏!"$ and 𝑅 from high-fidelity data
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Data-driven model discovery: the SparTA algorithm [Schmeltzer, Dwight, Cinnella, FTaC 2020]
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Data-augmented SpaRTA model

𝜈! = 𝑓(𝑘, 𝜔)
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Data-driven model discovery: the SparTA algorithm [Schmeltzer, Dwight, Cinnella, FTaC 2020]

SpaRTA workflow (from Schmeltzer et al.)

§ Create a database of  ”exact” DNS/LES data for 𝑏!"$ and 𝑅
• Frozen approach: passively solve turbulent equations 

using high-fidelity mean-flow and Reynolds-stress data

§ Discovery step: use sparse elastic-net regression to 
identify suitable model structures

§ Inference step: use ridge regularized least mean square 
regression to identify coefficients

§ Run competing models through the CFD code and select 
best model



§ In practice: we construct 𝑏!"$ by using the effective eddy viscosity approach of Pope (JFM, 1975)

§ Assume 𝜏!" = 𝜏!"
%&'!
%("

and project 𝜏!" onto a minimal integrity basis:

𝑏"#
$ = *

%&',…,'*

𝛼% 𝐼', 𝐼+, 𝐼,, 𝐼-, 𝐼. 𝑇"#
%

§ For 2D flow, bij depends on three tensor polynomials of the mean strain rate 𝑆!" and rotation Ω!" + 
2 invariants  I1=|𝑆!"|2, I2=|Ω!"|2:

§ Model 𝑅 as : 𝑅 = 2𝑘𝑏!")
%&'!
%("

, where is modelled similarly to 𝑏!"$

§ Build libraries of polynomial functions of the invariants

ℬ* = [𝐶, 𝐼+, 𝐼,, 𝐼+,, 𝐼,,, 𝐼+𝐼,, … ] so that 𝑏!"$ = ∑*-+,…,+0Θ ⋅ ℬ* 𝑇!"*

with Θ a vector of coefficients

§ Find Θ by solving a regularized (elastic net) regression problem
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Data-driven model discovery: the SparTA algorithm [Schmeltzer, Dwight, Cinnella, FTaC 2020]
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OUTCOME: sparse data-driven Explicit Algebraic Reynolds-Stress Model (EARSM)



§ Model corrections to k-ω SST derived using 
LES/DNS data for:
• Periodic 2D-hill flow (PH) at Re=10595 à M(1)

• Converging-diverging channel (CD) at 
Re=12600 à M(2)

• Curved backward-facing step (CBFS) at 
Re=13700 à M(3)

§ Corrections propagated through the 
OPENFOAM open source CFD solver
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Results

Data-driven models (including those trained
for PH and CBFS) outperform the baseline
for all cases

CBFS results for various models

PH results for various models at Re=37000



§ Plug generic model into the CFD solver

§ Collect high-fidelity data for any QoI (e.g., velocity)
§ Find coefficients by solving the optimization problem :

Θ∗ = arg min2 𝑈345675(Θ) − 𝑈89 + 𝜆 Θ + + 0.5𝜆(1 − 𝜌) Θ ,

§ Preliminary local sensitivity analysis for reducing problem dimensionality –> 12 parameters

§ Enforcement of realizability constraints

§ Optimization based on blackbox python library : CORS algorithm (constrained optimization using response 
surfaces)
• Cubic radial basis function surrogate + resampling
• Candidate samples preventing the CFD solver to converge are discarded and resampled

§ Only one step needed (simultaneous discovery and inference)
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CFD-driven SparTA algorithm [Ben Hassan-Saidi, Cinnella, Grasso 2020]

OUTCOME: data-driven Explicit Algebraic Reynolds-Stress Model (EARSM)



§ Preliminary results for the PH flow at Re=10595
§ Comparison with baseline model and CFD-free SpaRTA models. Optimization based on 75 CFD runs.

§ CFD-driven SpaRTA outperforms the baseline and deliver results comparable to CFD-free SpaRTA
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Results
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Quantifying modeling uncertainties : Bayesian model averaging

§ Model identification procedures generally deterministic
• No estimate of predictive uncertainties provided

§ Use of Bayesian statistics to infer on model coefficient posterior distributions
• Bayesian inference pictures the relation between data, a priori knowledge and updated knowledge of the 

coefficients

𝒑 𝜽 𝑫 =
𝒑 𝑫 𝜽
𝒑 𝑫

𝒑(𝜽)

• Well-informed posteriors are peaked à Maximum A Posteriori (MAP) approximation of the posteriors

§ Bayesian model and scenario averaging (BMSA) to account for uncertainties in the choice of model 
structure and of training scenarii (geometry and flow conditions)

with M = (M1, M2,…, MN), S = (S1, S2,…, SK) a set of concurrent models and scenario, respectively.

§ The weights are the posterior model probabilities AND scenario probabilities (to be assigned a priori)
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p Δ |M,S( ) =

k=1

K

∑ p Δ | Mi ,zk( )P Mi | zk( )
i=1

N

∑ P Sk( )



§ Prediction of compressible flow through a compressor cascade (NACA65 V103) at off design conditions

§ Results based on three models (𝑘 − 𝜔 Wilcox, 𝑘 − 𝜀 Launder-Sharma & Spalart-Allmaras)

§ Propagation of the 13 boundary layer MAP estimates AND of 3 MAP estimates calibrated against LES data for the 
NAVA65 V103 cascade at operating conditions different from prediction ones
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BMSA: Flow through a compressor cascade

Total pressure loss field: mean and standard deviation
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Total pressure loss at x/l=1.1
From De Zordo-Banliat et al., C&F, 2020



Maximilien de Zordo-Banliat  PhD counselor :  Grégory Dergham (Safran Tech) Paola Cinnella & 
Xavier Merle (DynF luid) 
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§Three formulations for 𝑃(𝑆:) were tested 

>Consensus based criterion >Calibration-driven criterion >Operating condition-based criterion

BMSA: Flow through a compressor cascade

Scenario and model probabilities used for BMSA prediction: 
𝑘 − 𝜔 Wilcox (white), 𝑘 − 𝜀 Launder-Sharma (black),  Spalart-Allmaras (grey)



Space-dependent Bayesian Model Averaging

§ BMSA uses the same weights throughout the flow field à contrary to expert judgment

§ Further progress: compute 𝑷 𝑴𝒊 𝑫 as a function of space
• Infer model probabilities for each flow region
• Identify the “best” model (if any) in each region

§ Clustered Bayesian Averaging  [Yu, 2011]: regression of weights using decision trees
• For a new point 𝑥!,  the average prediction on the ensemble of trees gives the weights of the models. 
• The final prediction is a space-dependent model average with weights wj

𝑦/"01% =*
#

𝑤# 𝑦#
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CBMA: preliminary results

§ CBMA of 𝑘 − 𝜔 , 𝑘 − 𝜖 & Spalart-Allmaras as models.  LES as reference data
Data: 300 points  CBMA: 1000 trees
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Maximilien de Zordo-Banliat  PhD counselor :  Grégory Dergham (Safran Tech) Paola Cinnella & 
Xavier Merle (DynF luid) 
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2D	distribution	of	model	
weights



§ Model discovery by learning from data represents an attractive opportunity for developing 
improved RANS models, customized for reproducing classes of flows
• Encouraging results obtained for a variety of 2D flows, including massively separated flows and 

turbomachinery flows

• Work needed for better improving the algorithms and reducing computational cost

§ Bayesian inference provides a systematic framework for 
• updating coefficients associated to turbulence models, 

• selecting or averaging (BMSA) concurrent models

• Providing estimates of confidence intervals

§ Work in progress:
• Bayesian formulation of SpaRTA

• Combination of concurrent SpaRTA models via BMSA and/or CBMA
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Conclusions
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§ Let Mi be a model structure in set M of m models

§ Be zj a calibration dataset taken in a training set Z of s calibration scenarios

§ BMSA prediction of the expectancy of QoI Δ for a new scenario :

The scenario of Δ is NOT in the calibration set Z

is the expectancy of Δ for the new scenario,
under model Mi calibrated on dataset zj
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Bayesian model-scenario averaging (BMSA)

   
E Δ |Z⎡⎣ ⎤⎦ = E Δ | z j , Mi

⎡⎣ ⎤⎦P Mi | z j( )P z j( )
j=1

s

∑
i=1

m

∑

  
E Δ | z j , Mi
⎡⎣ ⎤⎦



§ Similarly, the variance of Δ may be written as:
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In-model, in-scenario variance

Between-model, in-scenario variance (model error)

Between-scenario variance (spread)

   

var Δ |Z⎡⎣ ⎤⎦ = var Δ | z j , Mi
⎡⎣ ⎤⎦P Mi | z j( )P z j( )

j=1

s

∑
i=1

m

∑ +

E Δ | z j , Mi
⎡⎣ ⎤⎦ − E Δ | z j

⎡⎣ ⎤⎦( )2
P Mi | z j( )P z j( )

j=1

s

∑
i=1

m

∑ +

E Δ | z j
⎡⎣ ⎤⎦ − E Δ |Z⎡⎣ ⎤⎦( )2

P z j( )
j=1

s

∑

Bayesian model-scenario averaging (BMSA)


