Data-driven discovery and uncertainty quantification of turbulence models for Fluid Dynamics

Paola CINNELLA (paola.cinnella@sorbonne-universite.fr)

in collaboration with: I. Ben Hassan Saidi, IAT; G. Dergham, Safran Tech; M. De Zordo-Banliat, Safran Tech/ENSAM DynFluid; R. Dwight, TU Delft, NL; W.N. Edeling, CWI, NL; X. Merle, DynFluid; M. Schmeltzer, TU Delft, NL

2^e Rencontres Chercheurs/Ingénieurs « Saisir le mouvement », 25 novembre 2020 Décrire et inférer la dynamique des Systèmes

Talk overview

- Turbulence modeling: why and how
- Using data for predicting turbulence?
- Quantifying modeling uncertainties
- Conclusions and future trends

Talk overview

- Turbulence modeling: why and how
- Using data for predicting turbulence?
- Quantifying modeling uncertainties
- Conclusions and future trends

Turbulence modeling: why

- Turbulent flows omnipresent in Engineering sciences
 - Wide range of spatial and temporal scales
 - Key parameter: Reynolds number (ratio of inertia to viscous forces)
- Navier-Stokes equations contain all the necessary information:
 - DNS (computationally <u>intractable</u> for most practical cases)
 - Alternatives: hierarchy of approximations, depending the amount of resolved vs modelled scales

LES→ (RANS/LES)→RANS

- More resolved scales → higher cost (especially for wall-bounded flow) and sensitivity to numerical errors & boundary conditions
 - Not suitable for routine use in industry
- More modeled scales → lower cost, more flow-dependent, and <u>uncertain</u> turbulence models

RANS: workhorse for CFD simulations in engineering

Reynolds-Averaged Navier-Stokes (RANS)

Visualization of turbulent boundary layer (Mach 3.0) via nano-tracer-based planar laser scattering [Ding et al., 2018]

Turbulence modeling: how

- Reynolds averaged Navier-Stokes (RANS) equations:
 - Define a suitable averaging operator (modeling choice)
 - Decompose field quantities into average and fluctuating parts

$$\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'; \quad p = \overline{p} + p'$$

$$\nabla \cdot \overline{\mathbf{u}} = 0$$

$$\frac{\partial \overline{\mathbf{u}}}{\partial t} + \overline{\mathbf{u}} \cdot \nabla \overline{\mathbf{u}} = -\frac{1}{\rho} \nabla \overline{p} + \nabla \cdot \left(v \nabla \overline{\mathbf{u}} - \overline{\mathbf{u'u'}} \right)$$
Reynolds stresses

$$\tau_{ij} = \overline{u'_i u'_j} = 2k \left(\frac{b_{ij}}{2} + \frac{1}{3} \delta_{ij} \right)$$

 b_{ij} = anisotropy tensor \rightarrow must be modelled k = turbulent kinetic energy

Reynolds stresses need <u>a constitutive law</u>: a turbulence model

- 1. Look for a mathematical formulation (model structure)
- 2. Look for closure coefficients (model parameters)

Turbulence modeling: how

- Model structure classically derived from physical arguments
 - Integrates physical principles such as objectivity, symmetries, realizability
 - Relies on more or less crude modeling assumptions
- Model parameters calibrated for simple flows and from uncertain data
- Rich zoology of models of different complexities
- No universally accepted model, no universal parameters

Pressure distribution along a wing section from various RANS models (lines) and experiments (symbols). 6th AIAA Drag prediction workshop. 6

Talk overview

- Turbulence modeling: why and how
- Using data for predicting turbulence?
- Quantifying modeling uncertainties
- Conclusions and future trends

Using data for predicting turbulence?

- Rapidly increasing mass of high-fidelity flow field data
 - Turbulence-resolving simulations
 - Complete flow-field description, low residual uncertainty
 - Limited to simple configurations, low to moderate Reynolds numbers
 - Flow measurements (highly resolved PIV, stress-sensitive films, MEMS):
 - More complex configurations, high Reynolds numbers
 - Incomplete and possibly noisy data
- Use data to inform lower-fidelity RANS model
 - Inform parameters without changing model structure (model calibration)
 - Inform model structure (model identification)
- Challenges:
 - Much smaller (but well resolved) amount of training data than in typical IA applications
 - Use of possibly incomplete and noisy data
 - Estimate predictive uncertainties

Using data for predicting turbulence?

- General framework
 - No longer a « universal » model, but a model that generalises as well as possible to a class of flows
 - Choose a functional basis
 - Enforce physical constraints (whenever possible)
 - Train against data
- Two training strategies
 - CFD-free training
 - © Inexpensive (manipulate analytical expressions)
 - 🐵 Requires high-fidelity, low noise data for turbulent quantities
 - 🐵 Does not warrant exact energy conservation
 - 🐵 May lead to non robust models
 - CFD-driven training
 - © May use virtually any data (mean flow and turbulent quantities)
 - © May ensure energy conservation
 - [©] Produces robust models
 - 🐵 Requires the solution of a VERY costly multidimensional optimization problem

Data-driven model discovery: the SparTA algorithm [Schmeltzer, Dwight, Cinnella, FTaC 2020]

- SpaRTA = SPArse Regression of Turbulent-stress Anisotropy
 - Open-box machine learning algorithm
 - CFD-free training
 - Uses a pre-defined library of explicit functions for learning
- Start with linear eddy viscosity model (here, Menter's $k \omega$ SST)

$$\tau_{ij} = 2k \left(b_{ij} + \frac{1}{3} \delta_{ij} \right); \quad b_{ij} = -\frac{v_t}{k} S_{ij} \qquad v_t = f(k, \omega)$$

+ transport equations for k and ω

- \rightarrow Not suitable for flows separation, streamline curvature, strong gradients, etc.
- Internal additive corrections of Reynolds stress anisotropy (b_{ij}^{Δ}) and turbulent transport equations (R):

$$b_{ij} = -\frac{V_t}{k}S_{ij} + b_{ij}^{\Delta}$$

• Learn b_{ij}^{Δ} and R from high-fidelity data

Data-augmented SpaRTA model

Data-driven model discovery: the SparTA algorithm [Schmeltzer, Dwight, Cinnella, FTaC 2020]

- Create a database of "exact" DNS/LES data for b_{ij}^{Δ} and R
 - Frozen approach: passively solve turbulent equations using high-fidelity mean-flow and Reynolds-stress data
- Discovery step: use sparse elastic-net regression to identify suitable model structures
- Inference step: use ridge regularized least mean square regression to identify coefficients
- Run competing models through the CFD code and select best model

SpaRTA workflow (from Schmeltzer et al.)

Data-driven model discovery: the SparTA algorithm [Schmeltzer, Dwight, Cinnella, FTaC 2020]

- In practice: we construct b_{ij}^{Δ} by using the effective eddy viscosity approach of Pope (JFM, 1975)
- Assume $\tau_{ij} = \tau_{ij} \left(\frac{\partial \overline{u}_i}{\partial x_j} \right)$ and project τ_{ij} onto a minimal integrity basis:

$$b_{ij}^{\Delta} = \sum_{l=1,\dots,10} \alpha_l(I_1, I_2, I_3, I_4, I_5) T_{ij}^l$$

For 2D flow, b_{ij} depends on three tensor polynomials of the mean strain rate S_{ij} and rotation Ω_{ij} + 2 invariants I₁=|S_{ij}|², I₂=|Ω_{ij}|²:

$$b_{ij}(S_{ij},\Omega_{ij}) = \alpha_1(I_1,I_2)S_{ij} + \alpha_2(I_1,I_2)(S_{ik}\Omega_{kj} - \Omega_{ik}S_{kj}) + \alpha_3(I_1,I_2)(S_{ik}S_{kj} - \frac{1}{3}\delta_{ij}S_{mn}S_{nm})$$

- Model R as : $R = 2k b_{ij}^R \frac{\partial \overline{u}_i}{\partial x_j}$, where is modelled similarly to b_{ij}^{Δ}
- Build libraries of polynomial functions of the invariants

$$\mathcal{B}_{l} = [C, I_{1}, I_{2}, I_{1}^{2}, I_{2}^{2}, I_{1}I_{2}, ...]$$
 so that $b_{ij}^{\Delta} = \sum_{l=1,...,10} \Theta \cdot \mathcal{B}_{l} T_{ij}^{l}$

with Θ a vector of coefficients

∂'Alembert

- Find Θ by solving a regularized (elastic net) regression problem

OUTCOME: sparse data-driven Explicit Algebraic Reynolds-Stress Model (EARSM)

Results

- Model corrections to k-ω SST derived using LES/DNS data for:
 - Periodic 2D-hill flow (PH) at Re=10595 \rightarrow M⁽¹⁾
 - Converging-diverging channel (CD) at Re=12600 → M⁽²⁾
 - Curved backward-facing step (CBFS) at Re=13700 → M⁽³⁾
- Corrections propagated through the OPENFOAM open source CFD solver

Data-driven models (including those trained for PH and CBFS) outperform the baseline for all cases

CFD-driven SparTA algorithm [Ben Hassan-Saidi, Cinnella, Grasso 2020]

- Plug generic model into the CFD solver
- Collect high-fidelity data for any QoI (e.g., velocity)
- Find coefficients by solving the optimization problem :

 $\Theta^* = \arg \min_{\Theta} \left\| U_{Sparta}(\Theta) - U_{HF} \right\| + \lambda \|\Theta\|_1 + 0.5\lambda(1-\rho) \|\Theta\|_2$

- Preliminary local sensitivity analysis for reducing problem dimensionality -> 12 parameters
- Enforcement of realizability constraints
- Optimization based on blackbox python library : CORS algorithm (constrained optimization using response surfaces)
 - Cubic radial basis function surrogate + resampling
 - Candidate samples preventing the CFD solver to converge are discarded and resampled

OUTCOME: data-driven Explicit Algebraic Reynolds-Stress Model (EARSM)

Only one step needed (simultaneous discovery and inference)

Results

- Preliminary results for the PH flow at Re=10595
- Comparison with baseline model and CFD-free SpaRTA models. Optimization based on 75 CFD runs.

• CFD-driven SpaRTA outperforms the baseline and deliver results comparable to CFD-free SpaRTA

Talk overview

- Turbulence modeling: why and how
- Using data for predicting turbulence?
- Quantifying modeling uncertainties
- Conclusions and future trends

Quantifying modeling uncertainties : Bayesian model averaging

- Model identification procedures generally <u>deterministic</u>
 - No estimate of predictive uncertainties provided
- Use of Bayesian statistics to infer on model coefficient posterior distributions
 - Bayesian inference pictures the relation between data, *a priori* knowledge and updated knowledge of the coefficients

$$p(\theta|D) = rac{p(D|\theta)}{p(D)} p(\theta)$$

- Well-informed posteriors are peaked \rightarrow Maximum A Posteriori (MAP) approximation of the posteriors
- Bayesian model and scenario averaging (BMSA) to account for uncertainties in the choice of model structure and of training scenarii (geometry and flow conditions)

$$p(\Delta | \boldsymbol{\mathcal{M}}, \boldsymbol{\mathcal{S}}) = \sum_{i=1}^{N} \sum_{k=1}^{K} p(\Delta | \boldsymbol{M}_{i}, \boldsymbol{z}_{k}) P(\boldsymbol{M}_{i} | \boldsymbol{z}_{k}) P(\boldsymbol{S}_{k})$$

with $\mathcal{M} = (M_1, M_2, ..., M_N)$, $\mathcal{S} = (S_1, S_2, ..., S_K)$ a set of concurrent models and scenario, respectively.

The weights are the posterior model probabilities AND scenario probabilities (to be assigned a priori)

BMSA: Flow through a compressor cascade

- Prediction of compressible flow through a compressor cascade (NACA65 V103) at off design conditions
- Results based on three models ($k \omega$ Wilcox, $k \varepsilon$ Launder-Sharma & Spalart-Allmaras)
- Propagation of the 13 boundary layer MAP estimates AND of 3 MAP estimates calibrated against LES data for the NAVA65 V103 cascade at operating conditions different from prediction ones

BMSA: Flow through a compressor cascade

∂'Alembert Institut Jean le Rond d'Alembert

SCIENC

SORBONN

UNIVERSITÉ

 $k - \omega$ Wilcox (white), $k - \varepsilon$ Launder-Sharma (black), Spalart-Allmaras (grey)

Space-dependent Bayesian Model Averaging

- BMSA uses the same weights throughout the flow field \rightarrow contrary to expert judgment
- Further progress: compute $P(M_i|D)$ as a function of space
 - Infer model probabilities for each flow region
 - Identify the "best" model (if any) in each region
- Clustered Bayesian Averaging [Yu, 2011]: regression of weights using decision trees
 - For a new point x_t , the average prediction on the ensemble of trees gives the weights of the models.
- The final prediction is a space-dependent model average with weights w_i

$$y_{final} = \sum_{j} w_{j} y_{j}$$

CBMA: preliminary results

• CBMA of $k - \omega$, $k - \epsilon$ & Spalart-Allmaras as models. LES as reference data Data: 300 points CBMA: 1000 trees

Conclusions

- Model discovery by learning from data represents an attractive opportunity for developing improved RANS models, customized for reproducing <u>classes</u> of flows
 - Encouraging results obtained for a variety of 2D flows, including massively separated flows and turbomachinery flows
 - Work needed for better improving the algorithms and reducing computational cost
- Bayesian inference provides a systematic framework for
 - updating coefficients associated to turbulence models,
 - selecting or averaging (BMSA) concurrent models
 - Providing estimates of confidence intervals
- Work in progress:
 - Bayesian formulation of SpaRTA
 - Combination of concurrent SpaRTA models via BMSA and/or CBMA

Questions?

[1] Edeling, W.N., Cinnella, P., Dwight, R., Bijl, H., 2014. Bayesian estimates of parameter variability in the k ε turbulence model. J Comp Phys 258 : 73-94.

[2] Edeling, W.N., Cinnella, P., Dwight, R., 2014. Predictive RANS simulations via Bayesian Model-Scenario Averaging. J Comp Phys 275 : 65-91.

[3] Edeling, W.N., Schmeltzer, M., Dwight, R., Cinnella, P., 2018. Bayesian predictions of RANS uncertainties using MAP estimates. AIAA J. 56(5):2018-2029

[4] Edeling, W.N., Iaccarino, G., Cinnella, P., 2017. Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty. Flow Turb & Comb 100(3):593-616

[6] Xiao, H., Cinnella, P., 2019. Quantification of model uncertainty in RANS simulations: a review. Progress in Aerospace Sciences 108: 1–31.n

[5] Schmeltzer, M., Dwight, R., Cinnella, P., 2020. Discovery of Algebraic Reynolds-Stress models Using Sparse Symbolic Regression. Flow Turb & Comb 104:579-603.

[7] De Zordo-Banliat M., Merle X., Dergham X., Cinnella P., 2020. Bayesian model-scenario averaged predictions of compressor cascade flows under uncertain turbulence models. Comp Fluid 201:104473.

Bayesian model-scenario averaging (BMSA)

- Let M_i be a model structure in set M of m models
- Be z_i a calibration dataset taken in a training set Z of s calibration scenarios
- BMSA prediction of the expectancy of Qol △ for a new scenario :

$$E\left[\Delta \mid \boldsymbol{Z}\right] = \sum_{i=1}^{m} \sum_{j=1}^{s} E\left[\Delta \mid \boldsymbol{z}_{j}, \boldsymbol{M}_{i}\right] P\left(\boldsymbol{M}_{i} \mid \boldsymbol{z}_{j}\right) P\left(\boldsymbol{z}_{j}\right)$$

The scenario of Δ is **<u>NOT</u>** in the calibration set *Z*

$$E\left[\Delta \,|\, z_{j}, M_{i}\right]$$

is the expectancy of Δ for the new scenario, under model M_i calibrated on dataset z_i

Bayesian model-scenario averaging (BMSA)

■ Similarly, the variance of △ may be written as:

$$\operatorname{var}\left[\Delta \mid Z\right] = \sum_{i=1}^{m} \sum_{j=1}^{s} \operatorname{var}\left[\Delta \mid z_{j}, M_{i}\right] P\left(M_{i} \mid z_{j}\right) P\left(z_{j}\right) +$$
In-model, in-scenario variance
$$\sum_{i=1}^{m} \sum_{j=1}^{s} \left(E\left[\Delta \mid z_{j}, M_{i}\right] - E\left[\Delta \mid z_{j}\right]\right)^{2} P\left(M_{i} \mid z_{j}\right) P\left(z_{j}\right) +$$
Between-model, in-scenario variance (model error)
$$\sum_{i=1}^{s} \left(E\left[\Delta \mid z_{i}, M_{i}\right] - E\left[\Delta \mid z_{j}\right]\right)^{2} P\left(M_{i} \mid z_{j}\right) P\left(z_{j}\right) +$$

$$\sum_{j=1}^{s} \left(E\left[\Delta \mid z_{j}\right] - E\left[\Delta \mid Z\right] \right)^{2} P(z_{j})$$

Between-scenario variance (spread)

