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“ Bandit manchot” is the French translation for 
“one-armed bandit”; however, a word-to-word

translation would be “crook penguin”.



As electricity is hard to store, balance between
production and demand must be strictly maintained

Current solution: forecast demand and adapt
production accordingly

• With the development of renewable energies,
production becomes harder to adjust

• New (smart) meters provide access to data and
instantaneous communication

Prospective solution: send incentive signals (electricity
tariff variations) to manage demand response

Introduction - Motivation



How to develop automatic solutions
to chose incentive signals dynamically?

Exploration: learn 
consumer behavior

Exploitation: optimize 
signal sending

Introduction - Motivation

Apply mathematical bandit theory to the sequential 
learning problem of demand side management



Stochastic multiarmed bandit

… …

In a multi-armed bandit problem, a gambler facing a row of 𝐾 slot machines
(also called "one-armed bandits") has to decide which 

machines to play to maximize her reward.



Stochastic multiarmed bandit
Each arm (slot machine) 𝑘 is defined by an unknown probability distribution νk with μk = E νk .

At each round t = 1, … , T the gambler

▸ Picks a machine It ∈ {1, … , K}

▸ Receives a reward Yt, with Yt│It = k ∼ 𝜈𝑘

Maximizing the expected cumulative reward = Minimizing pseudo-regret

A good bandit algorithm has a sublinear pseudo-regret:   
RT

T
→ 0

Mean reward of the best machine is known

Mean reward of the strategy

RT = T max
k = 1,…,K

μk − 𝔼 

t=1

T

μIt



Upper Confidence Bound (UCB) algorithm (Lai et al. 1985)

▸ Estimate the expectations μk (empirical means) based on past observations:

▸ Build a confidence interval for the expectations μk with high probability

With probability at least 1 − t−3

(Hoeffding-Azuma Inequality)

▸ Be optimistic and act as if the best possible reward was the true reward and choose the next
arm accordingly

which ensuresIt = arg max
k∈{1,…,K}

ොμt−1,k, + αt,k

ොμt−1,k =
1

Nk,t−1


s=1

t−1

gs 1{Is=k} with Nt−1,k = 

s=1

t−1

1{Is=k}

μk ∈ ොμt−1,k− αt,k , ොμt−1,k + αt,k with αt,k =
2 log t

Nt−1,k

RT ≲ T 𝐾log T





First of all: modeling 

How to model electricity demand?
▸Using classical (for EDF) power 
consumption forecasting methods 

How to formalize the sequential learning?
▸ Defining a protocol 

(under some assumptions)
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+ + + ⋯

Temperature Position in the year Hour

Yt = f1 temperature + f2 position in the year + f3 hour + f4 tariff + ⋯ + noise

▸ There is a known transfer function ϕ and an unknown parameter θ such that 

Yt = ϕ temperature, position in the year, hour, tariff … Tθ + noise
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Forecast
Observation

Generalized additive models for electricity demand
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Assumption:

▸ K tariffs 

▸ Homogenous population 

At each round t = 1, …

▸ Observe a context xt

▸ Choose price levels pt

▸ Observe the electricity demand Yt = ϕ xt, pt
Tθ + pt

Tεt

with 𝔼[εt] = 0, … 0 T and 𝕍 εt = Σ ∈ ℳK(ℝ)

Electricity demand modeling
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At each round t = 1, …, T

▸ Observe a context xt and a target ct

▸ Choose price levels pt

▸ Observe the resulting demand Yt and suffer a loss  Yt − ct
2

Protocol for target tracking



How to evaluate a target tracking algorithm?
▸Defining a regret criterion

How to adapt existing bandit theory?
▸Adapting LinUCB

algorithm (Li et al. 2010)

Bandit algorithm for
the management of a 
homogenous population

Joint work with Pierre Gaillard, Yannig Goude and Gilles
Stoltz, International Conference on Machine Learning, 2019
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Protocol: target tracking for contextual bandits
At each round t = 1, …, T

▸ Observe a context xt and a target ct

▸ Choose price levels pt

▸ Observe a resulting demand Yt = ϕ xt, pt
Tθ + pt

Tεt with 𝕍 εt = Σ

▸ Suffer a loss  Yt − ct
2 such that 

𝔼 Yt − ct
2 | past, xt, pt = ϕ xt, pt

Tθ − ct
2

+ pt
TΣpt

Aim: minimize the pseudo-regret

RT = 

t=1

T

ϕ xt, pt
Tθ − ct

2
+ pt

TΣpt − 

t=1

T

min
p

ϕ xt, p Tθ − ct
2

+ pTΣp

▸ Estimate parameters θ and Σ to estimate losses to reach a bias-variance trade-off
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Optimistic algorithm                     Inspired from Lin-UCB (Li et al. 2010)

For t = 1,2, … , 𝜏

▸ Select price levels deterministically to estimate Σ offline with Σ𝜏

For t = 𝜏, …, T

▸ Estimate θ based on past observations with θt−1 (Ridge regression) 

▸ Estimate the future expected loss for each p: ϕ xt, p T θt−1 − ct
2

+ pT Σ𝜏p

▸ Get a confidence bound for each p

ϕ xt, p T θt−1 − ct
2

+ pT Στp − ϕ xt, p Tθ − ct
2

+ pTΣp ≤ αt,p

▸ Select price levels optimistically 

pt ∈ arg min
p

ϕ xt, p T θt−1 − ct
2

+ pT Σ𝜏p − αt,p
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p ↦ ϕ xt, p Tθ − ct
2

+ pTΣp

p ↦ ϕ xt, p T θt−1 − ct
2

+ pT Στp
αt,p
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The problem is a bit more complex: curves vary with time t 
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Regret bound

For proper choices of confidence levels αt,p and number of exploration rounds 𝜏,
with high probability

RT = 

t=1

T

ϕ xt, pt
Tθ − ct

2
+ pt

TΣpt − 

t=1

T

min
p∈𝒫

ϕ xt, p Tθ − ct
2

+ pTΣp ≤ 𝒪 𝑇2/3

Elements of proof

▸ Deviation inequalities on θt [1] and on Σ𝜏

▸ Inspired from LinUCB regret bound analysis [2]

[1] Laplace’s method on supermartingales: Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved
algorithms for linear stochastic bandits, 2011

[2] Chu, W., Li, L., Reyzin, L., and Schapire, R. Contextual bandits with linear payoff functions, 2011

Theorem

Remark RT ≤ 𝒪 T ln T if Σ is known
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“Smart Meter Energy Consumption Data in London Households” 
Public dataset - UK Power Networks

Individual electricity demand at half-an-hour intervals throughout 2013 of 

~1 000 clients subjected to Dynamic Time of Use energy prices

Three tariffs: Low, Normal, High

Smart Meter Energy Consumption Data
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Design of the experiment
▸ Alternative policies cannot be tested on historical data… How to test bandit algorithms?

▹ Simulating data with Yt = f(xt) + pt
T

ξLow

ξNormal

ξHigh

+ pt
Tεt and 𝕍 εt = Σ

where Σ =

𝜎𝐿𝑜𝑤 0 0
0 𝜎𝑁𝑜𝑟𝑚𝑎𝑙 0
0 0 𝜎𝐻𝑖𝑔ℎ

Experiment 1: 𝜎𝐿𝑜𝑤

Experiment 2: 𝜎𝐿𝑜𝑤

= 𝜎𝑁𝑜𝑟𝑚𝑎𝑙 = 𝜎𝐻𝑖𝑔ℎ

> 𝜎𝐻𝑖𝑔ℎ > 𝜎𝑁𝑜𝑟𝑚𝑎𝑙

▸ Which target to choose?
▹ Close to average High demand during the evening
▹ Close to average Low demand during the night

▸Which context to choose? 
▹ Algorithm executed on historical context

▸Operational constraints on legible allocations of price levels:
▹ Impossible to send Low and High tariffs at the same time 
▹ Population split in 100 equal subsets
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Mer. avr. 10

Mer. avr. 10

First experimental results

Day 1

Day 100

Bias-
variance
trade-off

Variance non 
tariff

dependent

1 execution

⏤ Expected demand (100 executions)
--- Target 

Low Normal HighMar. jan. 1

Mer. avr. 10

Mer. avr. 10



How to drop
the homogenous population assumption?

▸ Clustering households (or igloos) 

How to test bandit algorithms?
▸ Using a data simulator

Towards the application of 
theoretical results
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Dropping the homogeneous population assumption

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Clustering algorithm 
(k-medoid)

k clusters
Historical individual 

time series

Double segmentation: 
▸ geographical, based on region information
▸ behavioral:

Feature creation using 
low rank approximation 
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Simulating electricity demand

▸ A semi-parametric approach with 
“generalized additive models + noise”

▹ Illustrate the theory 

▸ A black-box approach with conditional 
variational auto-encoders

▹ Test the algorithm robustness 

Joint work with Ricardo Jorge Bessa, IEEE access, 2020
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Demand generated for different tariff signals

High

Low

Normal

▸ Semi-parametric generator: + Interpretable

− Noise modeling

▸ Black-box generator: + Rebound effect

− Limited generalization capacity → transfer learning



Synthesis - Operational 
demand side management

▸ Personalizing incentive signals according to 
▹ Local meteorological condition
▹ Consumption behavior

▸ Taking into account operational
▹ Network constraints (renewable 
energies integration) 
▹ Commercial constraints (electricity 
supply contract)
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Personalized demand side management
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Protocol
At each round t = 1, …, T

▸ Observe G contexts (xt
i)i=1,…,G

▸ Observe some sub-targets, which may correspond to renewable energy 

production, ct

g
, with g ∈ 𝒫 (1, … , G) and some weights κt

g

▸ For i = 1, … , G

▹Choose price levels pt
i ∈ prices allowed by the electricity contract at t

▹Observe the resulting demand Yt
i= ϕi xt

i , pt
i T

θi + pt
iT

εt
i , with 𝕍 εt

i = Σi

▸ Suffer a loss 



g

κt

g


i∈g

Yt
i − ct

g
2
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Thank you for your attention! 
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Prospects

▸Improving experiments (by integrating
operational constraints, splitting clusters
to send several tariffs, testing with various
data generators…)

▸Integrating online hierarchical
forecasting to personalized demand side
management bandit algorithm


