Sampling random partitions (conditional simulations from a max-stable process)

Mathieu Ribatet

École Centrale de Nantes Laboratoire de Mathématiques Jean Leray, Université de Nantes

Annual maxima in Switzerland in 2003

Figure 1: Study region for the Swiss temperature data set. Shown are the weather stations and their respective annual maxima temperature for year 2003—41.5°*C* near Lugano, record breaker!!!

Motivations

 $\hfill\square$ In a risk assessment situation, and given a study region $\mathscr X$, one might be interested in

$$\mathbb{E}\left[\ell\{\eta(\cdot)\} \mid \eta(\mathbf{s}) = \mathbf{z}\right], \quad \text{for some functional } \ell : \mathbb{R}^{\mathscr{X}} \to \mathbb{R}.$$

Example 1. Reanalysis of a past heatwave with the current demographic situation, i.e.,

$$\ell: f \longmapsto \int_{\mathscr{X}} 1_{\{f(s) > \text{thresh}\}} R(s) \mathrm{d}s,$$

- { $f(s): s \in \mathcal{X}$ } temperature field;
- thresh a critical temperature threshold;
- R(s) number of inhabitants at risk at s.

Motivations

 $\hfill\square$ In a risk assessment situation, and given a study region $\mathscr X$, one might be interested in

$$\mathbb{E}\left[\ell\{\eta(\cdot)\} \mid \eta(\mathbf{s}) = \mathbf{z}\right], \quad \text{for some functional } \ell : \mathbb{R}^{\mathscr{X}} \to \mathbb{R}.$$

Example 1. Reanalysis of a past heatwave with the current demographic situation, i.e.,

$$\ell: f \longmapsto \int_{\mathscr{X}} 1_{\{f(s) > \text{thresh}\}} R(s) \mathrm{d}s,$$

- { $f(s): s \in \mathcal{X}$ } temperature field;
- thresh a critical temperature threshold;
- *R*(*s*) number of inhabitants at risk at *s*.

Need to characterize and simulate from $\eta \mid \{\eta(\mathbf{s}) = \mathbf{z}\}$.

Specificities

- □ We work with annual maxima, Gaussian–based geostatistics is likely to fail
- □ Extreme value theory tells us that max-stable processes make sense
- □ Any max-stable process (with unit Fréchet margins) has the following representation

$$\eta(s) = \max_{\varphi \in \Phi} \varphi(s), \qquad s \in \mathcal{X},$$

where $\Phi = \{\varphi_i : i \ge 1\}$ is Poisson point process on

 $\mathbb{C}_0 = \{ f \text{ continuous and non negative} \} \setminus \{ s \mapsto 0 \}$

and with intensity measure

$$\Lambda(A) = \int_0^\infty \Pr(\zeta Y \in A) \zeta^{-2} \mathrm{d}\zeta,$$

where *Y* is a non negative stochastic process on \mathscr{X} such that $\mathbb{E}{Y(s)} = 1$ for all $s \in \mathscr{X}$.

A picture is worth a thousand words...

Figure 2: One realization from the Poisson point process $\Phi = \{\varphi_i : i \ge 1\}$.

A picture is worth a thousand words...

Figure 2: Sample path of a realization of a max-stable process η (orange) and the underlying spectral functions (grey) φ_i .

Figure 3: Banksy spray paint (London).

- □ Parametric max-stable models
- □ Non unit Fréchet margins
- \Box Model fitting^{*a*}

^{*a*}not necessarily using solely the 2003 data.

Figure 3: Banksy spray paint (London).

- □ Parametric max-stable models
- □ Non unit Fréchet margins
- \Box Model fitting^{*a*}

^anot necessarily using solely the 2003 data.

From now, we assume that a parametric max-stable model is fitted (and is a good model).

Outline

- 1. Inner structure and algorithm
- 2. Devising a sampler (sheet of paper version)
- 3. Devising a sampler (computer version)
- 4. Application

1. Inner structureand algorithm

2. Devising a sampler (sheet of paper version)

3. Devising a sampler (computer version)

4. Application

1. Inner structure and algorithm

For $\mathbf{s} \in \mathscr{X}^k$, $\Phi = \{\varphi_i : i \ge 1\}$ is partition two PP $\Phi = \Phi_{\mathbf{s}}^- \cup \Phi_{\mathbf{s}}^+$ where

For $\mathbf{s} \in \mathscr{X}^k$, $\Phi = \{\varphi_i : i \ge 1\}$ is partitionned into two PP $\Phi = \Phi_{\mathbf{s}}^- \cup \Phi_{\mathbf{s}}^+$ where $\Phi_{\mathbf{s}}^- = \{\varphi \in \Phi : \varphi(\mathbf{s}) < \eta(\mathbf{s})\}.$ (sub-extremal functions)

For $\mathbf{s} \in \mathscr{X}^k$, $\Phi = \{\varphi_i : i \ge 1\}$ is partition into two PP $\Phi = \Phi_{\mathbf{s}}^- \cup \Phi_{\mathbf{s}}^+$ where

 $\Phi_{\mathbf{s}}^{-} = \{ \varphi \in \Phi \colon \varphi(\mathbf{s}) < \eta(\mathbf{s}) \}.$ (sub-extremal functions) $\Phi_{\mathbf{s}}^{+} = \{ \varphi \in \Phi \colon \exists j \in \{1, \dots, k\}, \varphi(s_{j}) = \eta(s_{j}) \},$ (extremal functions)

Sampling random partitions

mathieu.ribatet@ec-nantes.fr-9/27

A latent random partition

A latent random partition

□ For $\mathbf{s} = (s_1, ..., s_k) \in \mathscr{X}^k$, the process η induces a random partition Θ of \mathbf{s} ^{ISF} Here the partition is {{ s_1, s_2 }, { s_3 }}.

Step 1 Draw a random partition from the distribution $Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\};$ **Step 2** Conditionnaly on $\Theta = \tau$ and $\eta(\mathbf{s}) = \mathbf{z}$, draw independently the extremal functions φ_{i}^{+} ;

Step 3 Independently from the previous steps, draw the sub-extremal functions Φ_s^- ;

Step 4 Return the pointwise maxima process $\max\{\varphi_1^+, \dots, \varphi_{|\tau|}^+, \Phi_s^-\}$.

Step 1 Draw a random partition from the distribution $Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\};$

Step 2 Conditionnaly on $\Theta = \tau$ and $\eta(\mathbf{s}) = \mathbf{z}$, draw independently the extremal functions φ_i^+ ;

Step 3 Independently from the previous steps, draw the sub-extremal functions Φ_s^- ;

Step 4 Return the pointwise maxima process $\max\{\varphi_1^+, \dots, \varphi_{|\tau|}^+, \Phi_s^-\}$.

^{ISP} In this talk, I will focus on Step 1 only.

Lifting our carpet, we can show that our target distribution is of the following form:

$$\Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\} = \frac{1}{C(\mathbf{s}, \mathbf{z})} \prod_{j=1}^{|\tau|} \lambda_{\mathbf{s}_{\tau_j}}(\mathbf{z}_{\tau_j}) \underbrace{\int_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{s}_{\tau_j^c} \mid \mathbf{s}_{\tau_j}, \mathbf{z}_{\tau_j}}_{\text{probability to lie below}} (\mathbf{u}) d\mathbf{u},$$

where the normalization constant $C(\mathbf{s}, \mathbf{z})$ is given by

$$C(\mathbf{s}, \mathbf{z}) = \sum_{\tau} \prod_{j=1}^{|\tau|} \lambda_{\mathbf{s}_{\tau_j}}(\mathbf{z}_{\tau_j}) \int_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{s}_{\tau_j^c} | \mathbf{s}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}) d\mathbf{u}_{\tau_j^c}$$

and $|\tau|$ is the "size" of the partition τ .

1. Inner structure an	ıd
algorithm	

2. Devising a sampler (sheet of paper version)

Gibbs

3. Devising a sampler (computer version)

4. Application

2. Devising a sampler (sheet of paper version)

Recall our goal it to sample a random partition of the set {s₁,..., s_k}
 At first sight it sounds easy since we have to sample a random variable whose state space is finite

Do you recognize these numbers?

1	1	2	5	15
52	203	877	4140	21147
115975	678570	4213597	27644437	190899322
1382958545	10480142147	82864869804	682076806159	5832742205057

15	5	2	1	1
21147	4140	877	203	52
190899322	27644437	4213597	678570	115975
5832742205057	682076806159	82864869804	10480142147	1382958545

□ These are the first 20 Bell numbers.

 \Box Recall that Bell(*k*) is the number of partitions of a set with *k* elements.

15	5	2	1	1
21147	4140	877	203	52
190899322	27644437	4213597	678570	115975
5832742205057	682076806159	82864869804	10480142147	1382958545

□ These are the first 20 Bell numbers.

 \Box Recall that Bell(*k*) is the number of partitions of a set with *k* elements.

Combinatorial explosion

We cannot compute the normalizing constant

$$C(\mathbf{s}, \mathbf{z}) = \sum_{\tau \in \mathscr{P}_k} \prod_{j=1}^{|\tau|} \lambda_{\mathbf{s}_{\tau_j}}(\mathbf{z}_{\tau_j}) \int_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{s}_{\tau_j^c} | \mathbf{s}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}) d\mathbf{u},$$

15	5	2	1	1
21147	4140	877	203	52
190899322	27644437	4213597	678570	115975
5832742205057	682076806159	82864869804	10480142147	1382958545

□ These are the first 20 Bell numbers.

 \Box Recall that Bell(*k*) is the number of partitions of a set with *k* elements.

Combinatorial explosion

^{ICF} We cannot compute the normalizing constant

$$C(\mathbf{s}, \mathbf{z}) = \sum_{\tau \in \mathscr{P}_k} \prod_{j=1}^{|\tau|} \lambda_{\mathbf{s}_{\tau_j}}(\mathbf{z}_{\tau_j}) \int_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{s}_{\tau_j^c} | \mathbf{s}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}) d\mathbf{u},$$

MCMC samplers are especially designed for these situtations!!!

MCMC in just one slide (kind of...)

- Recall that MCMC samplers build a Markov chain whose stationnary distribution is our target distribution
- □ In practice devising a MCMC sampler consists in 2 steps:

Step 1 Write down your target density g (up to a normalizing constant)
Step 2 Choose a sensible transition kernel for your Markov chain. Most often, it is a Metropolis–Hastings kernel, i.e.,

Target distribution:
$$\Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\} \propto \prod_{j=1}^{|\tau|} \lambda_{\mathbf{s}_{\tau_j}}(\mathbf{z}_{\tau_j}) \int_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{s}_{\tau_j^c} \mid \mathbf{s}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}) d\mathbf{u}$$

Target distribution:
$$\Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\} \propto \prod_{j=1}^{|\tau|} w_{j,\tau}(\mathbf{z})$$

Target distribution:
$$\Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\} \propto \prod_{j=1}^{|\tau|} w_{j,\tau}(\mathbf{z})$$

Target distribution:
$$\Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\} \propto \prod_{j=1}^{|\tau|} w_{j,\tau}(\mathbf{z})$$

Target distribution:
$$\Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\} \propto \prod_{j=1}^{|\tau|} w_{j,\tau}(\mathbf{z})$$

Sampling random partitions

mathieu.ribatet@ec-nantes.fr – 17 / 27

Target distribution:
$$\Pr\{\Theta = \tau \mid \eta(\mathbf{s}) = \mathbf{z}\} \propto \prod_{j=1}^{|\tau|} w_{j,\tau}(\mathbf{z})$$

Gibbs sampler

□ This suggests a Gibbs sampler based on transitions

$$\Pr\{\Theta = \tilde{\tau} \mid \Theta_{-s_j} = \tau_{-s_j}, \eta(\mathbf{s}) = \mathbf{z}\} \propto \frac{\prod_{j=1}^{|\tilde{\tau}|} w_{j,\tilde{\tau}}(\mathbf{z})}{\prod_{j=1}^{|\tau|} w_{j,\tau}(\mathbf{z})}$$

where τ_{-s_j} denotes the restriction of τ to the set $\{s_1, \ldots, s_k\} \setminus \{s_j\}$. This sampler is computationnaly efficient since

- rightharpoonup 1 There is at most $|\tau| + 1$ possible states;
- Each state involves at most 4 weights $w_{j,\tau}(\mathbf{z})$.

1. Inner structure an	d
algorithm	

2. Devising a sampler
(sheet of paper
version)

3. Devising a sampler (computer

▶ version)

4. Application

3. Devising a sampler (computer version)

- □ We want to code the evolution of a Markov chain { τ_t : $t \ge 0$ } living in \mathscr{P}_k □ At each time step *t*, conditionnaly on the current state τ_t , the updating scheme is rather simple:
 - 1. Draw (uniformly) a location, i.e., $S \sim U\{s_1, \dots, s_k\}$;
 - 2. Freeze all the balls except the *S*-th ball;
 - 3. Compute the probability mass function

$$\Pr(\Theta = \tilde{\tau} \mid \Theta_{-S} = \tau_{t,-S}, \eta(\mathbf{s}) = \mathbf{z}),$$

which is a discrete distribution with at most $|\tau_t| + 1$ states.

4. Draw from this distribution and set it to the next state of the Markov chain¹

¹Because Gibbs sampler always satisfies $Pr(X_t \rightarrow X_*) = 1$.

Lemma 1. There is a one-one mapping between \mathcal{P}_k and

$$\mathscr{P}_{k}^{*} = \left\{ (a_{1}, \dots, a_{k}) \in \mathbb{N}^{k} \colon 1 = a_{1} \le a_{i} \le \max_{1 \le j < i} a_{j} + 1, \ i = 2, \dots, k \right\}.$$

Lemma 1. There is a one-one mapping between \mathcal{P}_k and

$$\mathscr{P}_{k}^{*} = \left\{ (a_{1}, \dots, a_{k}) \in \mathbb{N}^{k} \colon 1 = a_{1} \le a_{i} \le \max_{1 \le j < i} a_{j} + 1, \, i = 2, \dots, k \right\}.$$

□ The use of \mathscr{P}_k^* in any software implementation avoids the so-called label switching problem²

□ The use of \mathscr{P}_k^* in any software implementation avoids the so-called label switching problem²

²which is a curse in any MCMC–based inference...

1. Inner structure and algorithm

2. Devising a sampler (sheet of paper version)

3. Devising a sampler (computer version)

► 4. Application

4. Application

Checking our Gibbs sampler (Step 1)

Figure 4: Left: Trace plot of one simulated Markov chain with k = 5 conditioning locations. Right: Comparison of the theoretical probabilities $\{\pi_{\mathbf{x}}(\mathbf{z}, \tau), \tau \in \mathscr{P}_k\}$ to the empirical ones estimated from the simulated Markov chain.

Conditional simulation (Step 1–4): Simulation study

Table 1: Spatial dependence structures of Brown–Resnick processes with (semi) variogram $\gamma(h) = (h/\lambda)^{\kappa}$. The variogram parameters are set to ensure that the extremal coefficient function satisfies $\theta(115) = 1.7$.

Sample path properties				
	γ_1 : Very wiggly	γ_2 : Wiggly	γ_3 : Smooth	
λ	25	54	69	
κ	0.5	1.0	1.5	

Figure 5: Three realizations of a Brown–Resnick process with standard Gumbel margins and (semi) variograms γ_1 , γ_2 and γ_3 . The squares correspond to the 15 conditioning values that will be used in the simulation study. The right panel shows the associated extremal coefficient functions.

Conditional simulation (Step 1–4): Simulation study

Figure 5: Pointwise sample quantiles (0.025, 0.5, 0.975) estimated from 1000 conditional simulations of Brown–Resnick processes.

Figure 6: Left: Topographical map of Switzerland showing the sites and altitudes in metres above sea level of 16 weather stations for which annual maxima temperature data are available. Right: Map of temperature anomalies (°C), i.e., the difference between the pointwise medians obtained from 10000 conditional simulations and unconditional medians estimated from the fitted max-stable process.

□ The largest deviations occur in the plateau region of Switzerland

 $\Box \quad \text{The differences range between } 2.5^{\circ}\text{C and } 4.75^{\circ}\text{C}$

1	1	2	5	15
52	203	877	4140	21147
115975	678570	4213597	27644437	190899322
1382958545	10480142147	82864869804	682076806159	5832742205057

. . .

Thank you!³

Sampling random partitions

. . .

³And if you want to practice geostatistics of extremes have a look at my R package SpatialExtremes