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Objective

Let us be given a submanifold of Rd :

M =
{

q ∈ R
d , ξ(q) = 0

}

where ξ : Rd → R
m is a given smooth function (with m < d) such

that
G (q) = [∇ξ(q)]T ∇ξ(q) ∈ R

m×m

is an invertible matrix for all q in a neighborhood of M. The
objective is to sample the probability measure:

ν(dq) = Z−1
ν e

−V (q) σM(dq), Zν =

∫

M
e
−V (q) σM(dq) < ∞,

where σM(dq) is the Riemannian measure on M induced by the
scalar product 〈·, ·〉 defined in the ambient space R

d .
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Motivation
Such problems arise in many contexts: constrained mechanical
systems with noise, statistics, ...

One example is computational statistical physics: free energy
calculations. If X ∼ ρ where ρ(dq) = Z−1

e
−V (q) dq, then

ξ(X ) ∼ ξ#ρ. Let us define A : Rm → R by:

e
−A(z)dz = ξ#ρ(dz).

Then, using the co-area formula,

∇A(0) = Eρ(f (X )|ξ(X ) = 0) =

∫

M
f (q)ν̃(dq)

where f = G−1∇ξ · ∇V − div(G−1∇ξ) and

ν̃(dq) = Z−1
ν̃ e

−Ṽ (q) σM(dq)

where Ṽ (q) = V (q) + ln detG(q)
2 .

−→ Thermodynamic integration.
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Plan

The constrained overdamped Langevin dynamics

The constrained Langevin dynamics

The reverse projection check

Beyond reverse projection check
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Step 1: the overdamped Langevin dynamics (1/3)

The constrained overdamped Langevin dynamics (Wt is a
d -dimensional Brownian motion):

{

dqt = −∇V (qt) dt +
√
2dWt +∇ξ(qt)dλt

dλt ∈ R
m such that ξ(qt) = 0

is ergodic with respect to ν. It can indeed be rewritten as:

dqt = Π(qt) ◦ (−∇V (qt) dt +
√
2dWt)

where ◦ denotes the Stratonovitch product and

Π(q) = Id−∇ξ(q)G−1(q)[∇ξ(q)]T

is the orthogonal projector from R
d to TqM. One can then use

the divergence theorem on manifolds to prove that its unique
invariant measure is ν [Ciccotti, TL, Vanden-Einjden, 2008].

5 / 41



Constrained overdamped Langevin Constrained Langevin Reverse projection check Beyond reverse projection check

Step 1: the overdamped Langevin dynamics (2/3)

Discretization of the constrained overdamped Langevin dynamics:

{

qn+1 = qn −∇V (qn)∆t +
√
2∆tGn +∇ξ(qn)λ

n

λn ∈ R
m such that ξ(qn+1) = 0

where Gn ∼ N (0, Id).

Remark: By choosing V = Ṽ , an approximation of ∇A(0) is given
by the average of the Lagrange multipliers:

lim
T→∞

lim
∆t→0

1

T

T/∆t
∑

n=1

λn = ∇A(0).
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Step 1: the overdamped Langevin dynamics (3/3)

Time discretization implies a bias, which is of order ∆t. Let ν∆t

be the invariant measure for (qn)n≥0, then [Faou, TL, 2010]: for all
smooth function ϕ : M → R, ∃C , for small ∆t,

∣

∣

∣

∣

∫

M
ϕdν∆t −

∫

M
ϕdν

∣

∣

∣

∣

≤ C∆t.

The proof is based on expansions à la Talay-Tubaro.

How to eliminate the bias?

Metropolis-Hastings is not easy to apply since the probability to go
from qn to qn+1 does not have a simple analytical expression.

Idea: lift the problem to phase space in order to use the symmetry
up to momentum reversal of the constrained Hamiltonian
dynamics.
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Step 2: the Langevin dynamics (1/8)
Extended measure in phase space:

µ(dq dp) = Z−1
µ e

−H(q,p) σT∗M(dq dp)

where H(q, p) = V (q) + |p|2

2 and σT∗M(dq dp) is the phase space
Liouville measure on

T ∗M =
{

(q, p) ∈ R
d × R

d , ξ(q) = 0 and [∇ξ(q)]T p = 0
}

.

The marginal of µ in q is ν. Indeed, the measure µ rewrites:

µ(dq dp) = ν(dq)κq(dp)

where

κq(dp) = (2π)
m−d
2 e

− |p|2

2 σT∗
q M(dp)

with T ∗
qM =

{

p ∈ R
d , [∇ξ(q)]T p = 0

}

⊂ R
d .

Remark: Here and in the following, we assume for simplicity that
the mass tensor M = Id. It is easy to generalize the algorithm and
the analysis to the case M 6= Id. 8 / 41
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Step 2: the Langevin dynamics (2/8)
The constrained Langevin dynamics (γ > 0 is the friction parameter)







dqt = pt dt

dpt = −∇V (qt) dt − γpt dt +
√
2γdWt +∇ξ(qt) dλt

ξ(qt) = 0

is ergodic with respect to µ. Notice that [∇ξ(qt)]
Tpt = 0.

It can be seen as the composition of two dynamics:
• the constrained Hamiltonian dynamics:







dqt = pt dt

dpt = −∇V (qt) dt +∇ξ(qt) dλt

ξ(qt) = 0.

• the Ornstein-Uhlenbeck process on momenta:










dqt = 0

dpt = −γpt dt +
√

2γdWt +∇ξ(qt) dλt

[∇ξ(qt)]
Tpt = 0.
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Step 2: the Langevin dynamics (3/8)
Discretization of the Ornstein-Uhlenbeck process on momenta:
midpoint Euler leaves the measure κqn and thus µ invariant:







pn+1 = pn − ∆t

2
γ (pn + pn+1) +

√

2γ∆t G n +∇ξ(qn)λn,

∇ξ(qn)Tpn+1 = 0,

In the following, we denote one step of this dynamics by
ΨOU

∆t : T ∗M → T ∗M:

ΨOU
∆t (q

n, pn) = (qn, pn+1).

Remark: The projection is always well defined, and easy to
implement:

pn+1 = Π∗(qn)

(

(1−∆tγ/2)pn +
√
2γ∆t G n

1 + ∆tγ/2

)

where Π∗(q) = Id−∇ξ(q)G−1(q)[∇ξ(q)]T is the orthogonal
projector from R

d to T ∗
qM.
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Step 2: the Langevin dynamics (4/8)
Discretization of the constrained Hamiltonian dynamics (RATTLE):















































pn+1/2 = pn − ∆t

2
∇V (qn) +∇ξ(qn)λn+1/2,

qn+1 = qn +∆t pn+1/2,

ξ(qn+1) = 0, (Cq)

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1) +∇ξ(qn+1)λn+1,

[

∇ξ(qn+1)
]T

pn+1 = 0, (Cp)

where λn+1/2 ∈ R
m are the Lagrange multipliers associated with

the position constraints (Cq), and λn+1 ∈ R
m are the Lagrange

multipliers associated with the velocity constraints (Cp).

In the following, we denote one step of the RATTLE dynamics by
ΨRATTLE

∆t : T ∗M → T ∗M:

ΨRATTLE
∆t (qn, pn) = (qn+1, pn+1).
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Step 2: the Langevin dynamics (5/8)

Discretization of the constrained Langevin dynamics (Strang
splitting):















(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(qn+1, pn+3/4) = ΨRATTLE
∆t (qn, pn+1/4)

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, pn+3/4)

But there is still a bias due to time discretization...
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Step 2: the Langevin dynamics (6/8)
Let us denote by

S(q, p) = (q,−p)

the momentum reversal map and

Ψ∆t(q, p) = S
(

ΨRATTLE
∆t (q, p)

)

.

Fundamental properties of RATTLE: for ∆t small enough,

• Ψ∆t (Ψ∆t(q, p)) = (q, p)

• Ψ∆t is a symplectic map, which thus preserves σT∗M

[Hairer, Lubich, Wanner, 2006] [Leimkuhler, Reich, 2004] [Leimkuhler, Skeel, 1994].

One can thus add a Metropolis Hastings rejection step to get
unbiased samples: if (q′, p′) = Ψ∆t(q, p), the MH ratio writes:

δΨ∆t(q′,p′)(dq dp) e
−H(q′,p′) σT∗M(dq′ dp′)

δΨ∆t(q,p)(dq
′ dp′) e−H(q,p) σT∗M(dq dp)

= e
−H(q′,p′)+H(q,p).
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Step 2: the Langevin dynamics (7/8)
Constrained Generalized Hybrid Monte Carlo algorithm ([TL, Rousset,

Stoltz 2012], constrained version of [Horowitz 1991]):


























































(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(q̃n+1, p̃n+3/4) = Ψ∆t(q
n, pn+1/4)

If Un ≤ e
−H(q̃n+1,p̃n+3/4)+H(qn ,pn+1/4)

accept the proposal: (qn+1, pn+3/4) = (q̃n+1, p̃n+3/4)

else reject the proposal: (qn+1, pn+3/4) = (qn, pn+1/4)

p̃n+1 = −pn+3/4

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, p̃n+1)

where Un ∼ U(0, 1).
Remark: If ∆tγ/4 = 1, then pn+1/4 = Π∗(qn)(G n) ∼ κqn . One
thus obtains a constrained HMC algorithm, consistent with the
constrained overdamped Langevin (constrained MALA).
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Step 2: the Langevin dynamics (8/8)

Problem: RATTLE is only well defined and reversible for locally
small timesteps. Three possible difficulties:

• Ψ∆t(q, p) may not be defined;

• If Ψ∆t(q, p) is well defined, Ψ∆t (Ψ∆t(q, p)) may not be
defined;

• If Ψ∆t(q, p) and Ψ∆t (Ψ∆t(q, p)) are well defined, one may
have Ψ∆t (Ψ∆t(q, p)) 6= (q, p).
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Step 3: the reverse projection check (1/9)
In order to introduce the the set of positions and momenta from
which RATTLE is well defined, let us rewrite the RATTLE
dynamics as follows:














qn+1 = qn +∆t

[

pn − ∆t

2
∇V (qn)

]

+∆t∇ξ(qn)λn+1/2

pn+1 = Π∗(qn)

(

pn − ∆t

2

(

∇V (qn) +∇V (qn+1)
)

+∇ξ(qn)λn+1/2

)

where

∆tλn+1/2 = Λ

(

qn, qn +∆t

[

pn − ∆t

2
∇V (qn)

])

.

The function Λ : D → R
m, where D is an open set of M× R

d is
the Lagrange multiplier function which satisfies:

∀(q, q̃) ∈ D, q̃ +∇ξ(q)Λ(q, q̃) ∈ M.

We will discuss later how to rigorously build such a Lagrange
multiplier function. 16 / 41



Constrained overdamped Langevin Constrained Langevin Reverse projection check Beyond reverse projection check

Step 3: the reverse projection check (2/9)

The function Λ is only defined on D and thus ΨRATTLE
∆t is only

defined on the open set:

A =

{

(q, p) ∈ T ∗M,

(

q, q +∆t M−1

[

p − ∆t

2
∇V (q)

])

∈ D
}

and likewise, Ψ∆t = S ◦ΨRATTLE
∆t is defined on A.

Proposition ([TL, Rousset, Stoltz 2018])

If Λ is C 1, then Ψ∆t : A → T ∗M is a C 1 local diffeomorphism,

locally preserving the phase-space measure σT∗M(dq dp).
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Step 3: the reverse projection check (3/9)
Let us now introduce the RATTLE dynamics with momentum
reversal and reverse projection check: for any (q, p) ∈ T ∗M,

Ψrev
∆t (q, p) = Ψ∆t(q, p)1{(q,p)∈B} + (q, p)1{(q,p)6∈B}

where the set B ⊂ A ⊂ T ∗M is defined by

B =
{

(q, p) ∈ A, Ψ∆t(q, p) ∈ A and Ψ∆t ◦Ψ∆t(q, p) = (q, p)
}

.

Proposition ([TL, Rousset, Stoltz 2018])

Let us assume that Λ is C 1 and satisfies the non-tangential

condition: ∀(q, q̃) ∈ D,

[∇ξ (q̃ +∇ξ(q)Λ(q, q̃))]T ∇ξ(q) ∈ R
m×m is invertible.

Then, the set B is the union of path connected components of the

open set A ∩Ψ−1
∆t(A). It is thus an open set of T ∗M. Moreover,

Ψrev
∆t : T ∗M → T ∗M is globally well defined, preserves globally

the measure σT∗M(dq dp) and satisfies Ψrev
∆t ◦Ψrev

∆t = Id.
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Step 3: the reverse projection check (4/9)

Practically, Ψrev
∆t (q, p) is obtained from (q, p) ∈ T ∗M by the

following procedure:

(1) check if (q, p) is in A; if not return (q, p);

(2) when (q, p) ∈ A, compute the configuration (q1, p1) obtained
by one step of the RATTLE scheme;

(3) check if (q1,−p1) is in A; if not, return (q, p);

(4) compute the configuration (q2,−p2) obtained by one step of
the RATTLE scheme starting from (q1,−p1);

(5) if (q2, p2) = (q, p), return (q1,−p1); otherwise return (q, p).

The steps (3)-(4)-(5) correspond to the reverse projection check

[Goodman, Holmes-Cerfon, Zappa, 2017].
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Step 3: the reverse projection check (5/9)

The reverse projection check is useful!

Here, V = 0 and the projection is defined as the closest point
to M. Notice that q′′ 6= q!
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Step 3: the reverse projection check (6/9)
Assume for simplicity that ∃α > 0, {q ∈ R

d , ‖ξ(q)‖ ≤ α} is
compact. How to build admissible Lagrange multiplier functions?

Theoretically, one can use the implicit function theorem to build a
function Λ : Dimp → R

m where Dimp is an open subset of M×R
d

such that

{(q, q̃) ∈ M×M, [∇ξ(q)]T∇ξ(q̃) is invertible} ⊂ Dimp

This defines Λ(q, q̃) for q̃ in a neighborhood of M.

Remarks:

• There exists a non increasing function δ such that:

‖ξ(q̃)‖ < δ
(

‖([∇ξ(q)]T∇ξ(q̃))−1‖
)

⇒ (q, q̃) ∈ Dimp.

• For a fixed (q, p) ∈ T ∗M, for a sufficiently small timestep
∆t, Ψ∆t(q, p) ∈ Aimp and Ψ∆t ◦Ψ∆t(q, p) = (q, p). Thus,
Bimp is non empty!
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Step 3: the reverse projection check (7/9)

Numerically, one can use the Newton algorithm to extend this local
construction and compute the Lagrange multipliers for q̃ far
from M: perform a fixed number of iterations of the Newton
algorithm to solve

find λ ∈ R
m, ξ(q̃ +∇ξ(q)λ) = 0

and check if one gets into Dimp.

In practice, the set Dnewt is defined as the configurations for which
convergence to a point in M is observed (up to numerical error).
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Step 3: the reverse projection check (8/9)
The constrained GHMC algorithm writes:



























































(qn, pn+1/4) = ΨOU
∆t/2(q

n, pn)

(q̃n+1, p̃n+3/4) = Ψrev
∆t (q

n, pn+1/4)

If Un ≤ e
−H(q̃n+1,p̃n+3/4)+H(qn ,pn+1/4)

accept the proposal: (qn+1, pn+3/4) = (q̃n+1, p̃n+3/4)

else reject the proposal: (qn+1, pn+3/4) = (qn, pn+1/4)

p̃n+1 = −pn+3/4

(qn+1, pn+1) = ΨOU
∆t/2(q

n+1, p̃n+1)

where Un ∼ U(0, 1).

Proposition ([TL, Rousset, Stoltz 2018])

The Markov chain (qn, pn)n≥0 admits µ as an invariant measure.

To prove ergodicity, it remains to check irreducibility [Hartmann, 2008].
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Step 3: the reverse projection check (9/9)
Remarks:

• In Ψrev
∆t , one can use any potential V ! Choosing the potential

V of the target measure dν = Z−1
ν e−V dσM is good to

increase the acceptance probability.

• If ∆tγ/4 = 1, one obtains a HMC (or MALA) algorithm. If
∆tγ/4 = 1 and V = 0 in Ψrev

∆t , this is a constrained random
walk MH algorithm [Goodman, Holmes-Cerfon, Zappa, 2017].

• In pratice, one can use K steps of RATTLE within Ψrev to get
less correlated samples. [Bou-Rabee, Sanz Serna]

• If Ψrev
∆t (q

n, pn+1/4) = Ψ∆t(q
n, pn+1/4) (reverse projection

check OK), one obtains a consistent discretization of the
constrained Langevin dynamics.

• Similar ideas can be used to enforce inequality constraints.

• It may be interesting for numerical purposes to consider non
identity mass matrices.
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Numerical experiments (1/3)
Let M be the three-dimensional torus M = {q ∈ R

3, ξ(q) = 0}
where

ξ(q) =
(

R −
√

x2 + y2
)2

+ z2 − r2,

with 0 < r < R . Let us consider for ν = σT∗M the uniform
measure on M.
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“partial reverse check” = do not check (Ψ∆t ◦Ψ∆t = Id) ⇒ BIAS!
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Numerical experiments (2/3)

Let us now consider a double well case: ν = e
−VσT∗M where

V (x , y , z) = k(x2 − R2)2.

Typical trajectories for the GHMC dynamics (left ∆t = 0.05, right
∆t = 3):
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Numerical experiments (3/3)
Analysis of the efficiency (left mean residence duration, right:
non-reversibility rejection rate)
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The optimal timestep is of the order of 0.7. For such timesteps,
the rejections due to the non reversibility condition
(qn, pn) 6= Ψ∆t ◦Ψ∆t(q

n, pn) are of the order of 15-20%, the total
rejection rate being about 90%.
→ reverse projection check is useful to get efficient algorithms.
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Beyond reverse projection check

In collaboration with G. Stoltz and W. Zhang...
... following discussions with P. Breiding

In many situations, one is able to compute if not all, many
solutions to the problem: for (q, q̃) ∈ M×R

d ,

find Λ(q, q̃) ∈ R
m s.t. q̃ +∇ξ(q)Λ(q, q̃) ∈ M.

Let us assume that there exists D ⊂ M× R
d such that for all

(q, q̃) ∈ D, there exists n(q, q̃) ∈ N which is locally constant, and
n(q, q̃) C 1 functions (Λi(q, q̃) : D → R

m)1≤i≤n(q,q̃) such that

∀(q, q̃) ∈ D, q̃ +∇ξ(q)Λi(q, q̃) ∈ M.

How to use this additional information ?
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Examples

We have two situations in mind:

• All the solutions to ξ(q̃ +∇ξ(q)λ) = 0 can be analytically
computed

• Many solutions to ξ(q̃ +∇ξ(q)λ) = 0 can be numerically
computed

This is typically the case for algebraic submanifolds, i.e. when ξ is
a polynomial function. See for example the Julia packages
PolynomialRoots [J. Skowron, A. Gould] and HomotopyContinuation

[P. Breiding, S. Timme].
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Generalized algorithm (1/2)

Let us assign a probability πi (q, q̃) to each of the solutions
(Λi (q, q̃))1≤i≤n(q,q̃):

πi(q, q̃) ≥ 0 and

n(q,q̃)
∑

i=1

πi(q, q̃) = 1.

For example, πi(q, q̃) = 1
n(q,q̃) .

Then choose one of the solution at random, and adapt the
constrained GHMC algorithm.
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Generalized algorithm (2/2)
1. Update momenta: (qn, pn+1/4) = ΨOU

∆t/2(q
n, pn)

2. Compute the Lagrange multipliers (Λi(qn, q̃n))1≤i≤n(qn,q̃n),

where q̃n = qn +∆t
[

pn+1/4 − ∆t
2 ∇V (qn)

]

. Choose index
in ∈ {1, . . . , n(qn, q̃n)} with probability πin(qn, q̃n).

3. Compute the move (q̃n+1, p̃n+3/4) = Ψ∆t(q
n, pn+1/4), where

Ψ∆t uses in the RATTLE step the Lagrange multiplier Λin .
4. Check if one of the Lagrange multipliers (denoted by Λjn)

(Λj(q̃n+1, q̄n+1))1≤j≤n(qn+1 ,q̄n+1) brings back to (qn,−pn+1/4),

where q̄n+1 = q̃n+1 +∆t
[

p̃n+3/4 − ∆t
2 ∇V (q̃n+1)

]

. If not, set

(qn+1, pn+3/4) = (qn, pn+1/4), and go to Step 6.
5. Accept the move (qn+1, pn+3/4) = (q̃n+1, p̃n+3/4) with probability

1 ∧
(

πjn(q̃n+1, q̄n+1)

πin(qn, q̃n)
e
−H(q̃n+1,p̃n+3/4)+H(qn,pn+1/4)

)

else reject (qn+1, pn+3/4) = (qn, pn+1/4).

6. p̃n+1 = −pn+3/4 and (qn+1, pn+1) = ΨOU
∆t/2(q

n+1, p̃n+1)
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No need of a reverse projection check (1/2)

• If all the solutions to ξ(q̃ +∇ξ(q)λ) = 0 can be computed,
one knows in Step 4 that one of the Lagrange multipliers
(Λj(q̃n+1, q̄n+1))1≤j≤n(qn+1 ,q̄n+1) brings back to (qn,−pn+1/4)
−→ no rejection in Step 4.

• If, in addition, one chooses πi(q, q̃) = 1
n(q,q̃) , no need to

identify the Lagrange multiplier Λjn which brings back to
(qn,−pn+1/4) in Setp 4.

Under these two assumptions (all Lagrange multipliers can be
computed, and uniform probability on the Lagrange multipliers),
the algorithm is the following:
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No need of a reverse projection check (2/2)
1. Update momenta: (qn, pn+1/4) = ΨOU

∆t/2(q
n, pn)

2. Compute the Lagrange multipliers (Λi(qn, q̃n))1≤i≤n(qn,q̃n),

where q̃n = qn +∆t
[

pn+1/4 − ∆t
2 ∇V (qn)

]

. Choose index
in ∈ {1, . . . , n(qn, q̃n)} with probability 1/n(qn, q̃n).

3. Compute the move (q̃n+1, p̃n+3/4) = Ψ∆t(q
n, pn+1/4), where

Ψ∆t uses in the RATTLE step the Lagrange multiplier Λin .
4. Compute the number of Lagrange multipliers n(qn+1, q̄n+1)

for the backward move, where
q̄n+1 = q̃n+1 +∆t

[

p̃n+3/4 − ∆t
2 ∇V (q̃n+1)

]

.

5. Accept the move ((qn+1, pn+3/4) = (q̃n+1, p̃n+3/4)) with
probability

1 ∧
(

n(qn, q̃n)

n(q̃n+1, q̄n+1)
e
−H(q̃n+1,p̃n+3/4)+H(qn,pn+1/4)

)

else reject ((qn+1, pn+3/4) = (qn, pn+1/4)).
6. p̃n+1 = −pn+3/4 and (qn+1, pn+1) = ΨOU

∆t/2(q
n+1, p̃n+1)
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Theoretical results

One can adapt the arguments of the work [TL, Rousset, Stoltz 2018]

to show that

Proposition ([TL, Stoltz, Zhang 2019])

The Markov chain (qn, pn)n≥0 admits µ as an invariant measure.

Same remarks as before apply: change V or the number of steps in
Ψ∆t , MALA version if ∆tγ/4 = 1, inequality constraints, change
the mass matrix, ...
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Numerical experiments
Two measures on the torus.

Compare, over 107 iterations:

• Newton

• PolynomialRoots (PR) or HomotopyContinuation (Hom) with
uniform law on the Lagrange multipliers

• PolynomialRoots (PR-far) or HomotopyContinuation
(Hom-far) with non-uniform law on the Lagrange multipliers
(favor large jumps)

• Use PR-far and Hom-far every 50 Newton steps: PR50-far
and Hom50-far
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Numerical experiments

For the uniform law on the torus, results are indeed unbiased:
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Numerical experiments

For the bimodal distribution on the torus, Newton exhibits
metastability:
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Numerical experiments

For the bimodal distribution on the torus, Newton exhibits
metastability:
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Numerical experiments

Quantitative comparisons for the bimodal distribution on the torus:
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