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A history of successes in Reinforcement Learning
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2022
MuZero

Real-lif
e reinforcement le

arning application to 

increase data compression rate by 4% in 

video streaming applications. 

2018
Open AI 5

Super human performance in a real tim
e team 

game where cooperation between multip
le AI is 

required.

Demonstrate ability
 to learn in partia

lly 

observed environments.

DQN

Strong performance in a large variety of Atari 

games with high-dimensional in
put, surpassing 

game-specific AI algorith
ms on each game.

2013

1992
TD-Gammon

Human grandmaster le
vel at Backgammon, as 

early as 1992. This litt
le-known achievement 

predates DeepBlue, when Gary Kasparov was 

beaten at chess by classical algorith
ms.

Alpha Zero

Achieved super human performance at th
e game 

of Go, without prior human knowledge.

General algorith
m: re

sults replicated in Chess 

and Shogi.

2016

Can these techniques be applied to solve real-life
Air Liquide problems ?
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Context
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Context: Air Separation is an electro-intensive industry where electricity represents 75% of costs.

Optimization problem:  Given a liquefaction system and a customer demand profile, find the 
optimal combination of compressor flows that minimizes total production cost
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Reinforcement Learning 
framework
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What is RL ?
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What is RL ?
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Reinforcement Learning is a set of techniques applied when an agent 
repeatedly interacts with an environment, with the objective to maximize a 

long-term reward.
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RL cycle - State
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A state is defined by:

- The stored quantity of liquid at t

- The forecasted electricity price from t to t + 
horizon

- The forecasted liquid demand from t to 
t + horizon

- The forecasted gas demand at t 

- The current time and day
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RL cycle - Action
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An action is defined by:

- Compressor flow

- LIN liquefier 

- LOX liquefier

The action chosen by the agent defines the 
ASU setpoint.
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RL cycle - Reward
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● Compute the cost of production for each 
element

● When necessary, compute the missing stock for 
each element to satisfy the demand

● Estimate a penalization factor to discourage 
missing stock

reward       =      - cost of electricity     -  penalization cost for missing stock

→ We try to maximize future rewards, ie minimize cost of electricity
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Scenarios and
ASU environment
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Montoir ASU

ASU schema
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4 years of hourly historical data

Air flow

Electricity

Compressor 
+ Coldbox

Stocks

Liquefiers

LOX to client

GAN to client

LIN to client

forecast data → ± 5-10 €/MWh

forecast data → 
average on 3 last days

forecast data → data  ± 15-30 %
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Real historical electricity price data

Synthetic price scenario #1 out of 1000

Synthetic price scenario #2 out of 1000

Synthetic price scenario #3 out of 1000
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Synthetic gas delivery, scenario #2 out of 1000

Synthetic gas delivery, scenario #3 out of 1000

Synthetic gas delivery, scenario #1 out of 1000

Real gas delivery data
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Montoir ASU
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Synthetic liquid delivery, scenario #2 out of 1000

Synthetic liquid delivery, scenario #3 out of 1000

Synthetic liquid delivery, scenario #1 out of 1000

Real liquid delivery data
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Comparative results
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Agent training in the ASU environment
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Figure : Rolling average reward during training
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Results on test environments
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Figure : Metric obtained on environments per agent

Environment type:
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Results on test environments
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Figure : Metric obtained on environments per agent

Environment type:
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Results on test environments

24

Figure : Metric obtained on environments per agent

Environment type:
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Results on test environments
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Figure : Metric obtained on environments per agent

Environment type:
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Results on test environments
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Figure : Metric obtained on environments per agent

When trained in a 
environment with 
uncertainties, the RL agent is 
more robust to uncertainties

Environment type:



Reinforcement learning for ASU production planning               paul.berhaut@airliquide.comTHIS DOCUMENT IS •INTERNAL

Results on test environments
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Figure : Metric obtained on environments per agent

The RL agent trained in a 
no-uncertainty environment 
has the best performance in 
that environment.

Environment type:
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Results on test environments
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Figure : Metric obtained on environments per agent

The RL agent trained in an 
uncertain environment is the 
worse in that same 
environment

Environment type:
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Testing agent with a different metric
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Previous metric → penalizing price = 500 € / MWh 

New metric → penalizing price = 1.25 * current electricity price

● Too punitive metric ?

● Penalty quite far from the reality
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Results on test environments (second metric)
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Figure : Both metrics obtained on environment with 
high uncertainties per agent
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Thank you for your attention !

31


