Reinforcement learning for ASU production planning

Ikhlass YAYA-OYÉ, Axelle ALBOT, Paul BERHAUT

paul.berhaut@airliquide.com

Agenda

01 Introduction

02 Reinforcement learning framework

03 Scenarios and ASU environment

04 Comparative Results

Introduction

Liquefaction production scheduling

Context: Air Separation is an electro-intensive industry where electricity represents 75% of costs.

Optimization problem: Given a liquefaction system and a customer demand profile, find the optimal combination of compressor flows that minimizes total production cost

Air Liquide

Reinforcement Learning framework

What is RL?

What is RL?

Reinforcement Learning is a set of techniques applied when an <u>agent</u> <u>repeatedly interacts</u> with an <u>environment</u>, with the objective to maximize a <u>long-term reward</u>.

9 THIS DOCUMENT IS •INTERNAL

Reinforcement learning for ASU production planning paul.berhaut@airliguide.com

<u>A state is defined by:</u>

- The **stored quantity of liquid** at t
- The **forecasted electricity** price from t to t + horizon

Air Liquide

- The **forecasted liquid demand** from t to t + horizon
- The **forecasted gas** demand at t
- The current **time** and **day** -

RL cycle - State

RL cycle - Action

An action is defined by:

- Compressor flow
- LIN liquefier
- LOX liquefier

The action chosen by the agent defines the ASU setpoint.

RL cycle - Reward

- Compute the cost of production for each element
- When necessary, compute the **missing stock** for each element to **satisfy the demand**
- Estimate a **penalization factor** to discourage missing stock

reward = - cost of electricity - penalization cost for missing stock

 \rightarrow We try to maximize future rewards, ie minimize cost of electricity

Scenarios and ASU environment

Comparative results

Agent training in the ASU environment

Testing agent with a different metric

Previous metric → penalizing price = 500 € / MWh

- Too punitive metric?
- Penalty quite far from the reality

New metric → penalizing price = 1.25 * current electricity price

Results on test environments (second metric)

Figure : Both metrics obtained on environment with high uncertainties per agent

Thank you for your attention !

31 THIS DOCUMENT IS •INTERNAL

Reinforcement learning for ASU production planning paul.berhaut@airliquide.com

