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Introduction
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A history of successes in Reinforcement Learning

Can these techniques be applied to solve real-life
Air Liquide problems ?
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‘ Context

Liquefaction production scheduling

Context: Air Separation is an electro-intensive industry where electricity represents 75% of costs.

Optimization problem: Given a liquefaction system and a customer demand profile, find the
optimal combination of compressor flows that minimizes total production cost

Customer Demand
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Reinforcement Learning
framework
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What is RL ?

environment
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‘ What is RL ?

Reinforcement Learning is a set of techniques applied when an agent
repeatedly interacts with an environment, with the objective to maximize a
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long-term reward.
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‘ RL cycle - State

A state is defined by:

Aé - The stored quantity of liquid at t
. / {p - Thg forecasted electricity price fromttot +
{@ horizon
Envirenment
Vaward

A
3
Changed state,

- The forecasted liquid demand from t to
t + horizon

- The forecasted gas demand at t

The current time and day
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‘ RL cycle - Action
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An action is defined by:

Compressor flow
LIN liquefier

LOX liquefier

The action chosen by the agent defines the
ASU setpoint.

ing for ASU production planning
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‘ RL cycle - Reward

e Compute the cost of production for each

Aotion element
QF} {_‘\F} e When necessary, compute the missing stock for
- {@ éwmhmm each element to satisfy the demand

/ e Estimate a penalization factor to discourage
75 missing stock

Chang;d state
reward = -costofelectricity - penalization cost for missing stock

— We try to maximize future rewards, ie minimize cost of electricity
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Scenarios and
ASU environment
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ASU schema
average on 3 last days

GAN to client J
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4 years of hourly historical data
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Real historical electricity price data

Synthetic price scenario #1 out of 1000
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Synthetic price scenario #3 out of 1000
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‘ ASU schema
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Real gas delivery data

Synthetic gas delivery, scenario #1 out of 1000
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Real liquid delivery data
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Synthetic liquid delivery, scenario #1 out of 1000
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Comparative results
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‘ Agent training in the ASU environment
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Figure : Rolling average reward during training
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‘ Results on test environments

Environment type:
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Figure : Metric obtained on environments per agent
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‘ Results on test environments
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Production cost in M€

160 -

150 A

140 -

130 A

120 -

110 A

100 -

Environment type:

lowest uncertainties
realistic uncertainties

CoreengilneAgent

RLAgent trained in the

least uncertain env

Figure : Metric obtained on environments per agent
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‘ Results on test environments

Environment type:

160 { == lowest uncertainties
realistic uncertainties

mmm high amplitude of uncertainties

150

140

130

120 +

110 ¢

Production cost in M€

100 +

CoreengineAgent RLAgent trained in the
least uncertain env

Figure : Metric obtained on environments per agent

24 THIS DOCUMENT IS *INTERNAL Reinforcement learning for ASU production planning paul.berhaut@airliquide.com @ AirlLiquide




‘ Results on test environments
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‘ Results on test environments
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160 - mmm lowest uncertainties
realistic uncertainties
mmm high amplitude of uncertainties
150 -
1405 When trained in a
3 environment with
& 1301 uncertainties, the RL agent is
S - more robust to uncertainties
o 1
3
£ 110 -
100 -
90 -
m - L] L T
CoreengineAgent RLAgent trained in the RLAgent trained in a
least uncertain env real uncertainty env

Figure : Metric obtained on environments per agent

26 THIS DOCUMENT IS “INTERNAL Reinforcement learning for ASU production planning paul.berhaut@airliquide.com @ AirlLiquide




‘ Results on test environments

Environment type:
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‘ Results on test environments
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Testing agent with a different metric

Previous metric — penalizing price = 500 € / MWh

e Too punitive metric ?

e Penalty quite far from the reality

New metric — penalizing price = 1.25 * current electricity price
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Results on test environments (second metric)
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Figure : Both metrics obtained on environment with
high uncertainties per agent
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Thank you for your attention !
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