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RISE OF NEURAL NETWORKS MODELS FOR AUTOMATIC PREDICTIONS

Affordable access to massive
computational ressources Explosion of acquired quantified data

+ = High potential for 
innovative 
solutions
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RISE OF NEURAL NETWORKS MODELS FOR AUTOMATIC PREDICTIONS

Affordable access to massive
computational ressources Explosion of acquired quantified data

+

Machine learning : Makes automatic predictions/decisions by mimicking the behaviours observed in reference data

Neural-Networks : Machine learning models that are particularly suited to treat complex data (images, texts, voice, …)
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MAIN PRINCIPLES OF MACHINE LEARNING – DIAGNOSTIC AID EXAMPLE

Diagnostic aid

Training base

Patient 1:
• Age = 40
• White globule density  = 6 

Patient 2:
• Age = 28
• White globule density = 12 

Patient n:
• Age = 57
• White globule density = 8 

Diseased

Healthy

Healthy

……

New patient:
• Age = 35
• White globule density  = 5

Diagnostic:
Healthy or Diseased ??? 
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MAIN PRINCIPLES OF MACHINE LEARNING – DATA PREPARATION

Training base

Patient 1:
• Age = 40
• White globule density  = 6 

Patient 2:
• Age = 28
• White globule density = 12 

Patient n:
• Age = 57
• White globule density = 8 

Diseased

Healthy

Healthy

……

Pat. 1

Pat. 2

Pat. n

Age w.g.d. State
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MAIN PRINCIPLES OF MACHINE LEARNING – DATA PREPARATION

In the diagnostic aid example:
             Patient of the training base 

        Age
        White globule density

          Healthy or Diseased

i
X1

i
X2

i
Yi

Output observations :
•  Labels 
•       
•       

Y
n Yi ∈ {0,1}

Yi = 1
Yi = 0

Input observations :
•  observations 

X
n Xi ∈ ℝp

(here n=40 and p=2)
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MAIN PRINCIPLES OF MACHINE LEARNING – THE TRAINING/PREDICTION PRINCIPLE

Most likely label for     ? 

Output observations :
•  Labels 
•       
•       

Y
n Yi ∈ {0,1}

Yi = 1
Yi = 0

Input observations :
•  observations 

X
n Xi ∈ ℝp

(here n=40 and p=2)
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MAIN PRINCIPLES OF MACHINE LEARNING – THE TRAINING/PREDICTION PRINCIPLE

1. Choose a prediction model to split the training data into 
the     and the    . 

2. Train the optimal parameters.
3. Once the prediction model parameters trained, predicting 

the label of new observations like      is extremely simple 
and fast.

Output observations :
•  Labels 
•       
•       

Y
n Yi ∈ {0,1}

Yi = 1
Yi = 0

Input observations :
•  observations 

X
n Xi ∈ ℝp

(here n=40 and p=2)
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SUCCESS OF NEURAL-NETWORKS TO TREAT COMPLEX DATA

Example of the « Bios dataset », which was made public by linkedin/microsoft, to predict the job occupation using neural networks.

Input data

(A biography on linkedin)

Optimal data 
representation

(embedding)

Data 
preparation
(generally by 

using a generic 
pre-trained 

neural-network)

Prediction
(using a 

specific neural-
network)

“Surgeon”

Job recommendation

(out of a list of known jobs)
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SUCCESS OF NEURAL-NETWORKS TO TREAT COMPLEX DATA

Example of the « Bios dataset », which was made public by linkedin/microsoft, to predict the job occupation using neural networks.

Input data

(A biography on linkedin)

Optimal data 
representation

(embedding)

Data 
preparation
(generally by 

using a generic 
pre-trained 

neural-network)

Prediction
(using a 

specific neural-
network)

“Surgeon”

Job recommendation

(out of a list of known jobs)

Mimics the recommendations 
made in a reference training set

(here more than 400K 
recommendations)
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CHOOSING A PREDICTION MODEL HAS AN IMPACT ON THE FUTURE PREDICTION ACCURACY

Suppose now that a training observation was 
improperly labelled!

 We can use a more flexible model→
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CHOOSING A PREDICTION MODEL HAS AN IMPACT ON THE FUTURE PREDICTION ACCURACY

Suppose now that a training observation was 
improperly labelled!

 We can use a more flexible model

Poor generalisation here

Defining prediction models that are 
reasonably well constrained with regard to 
the data is very important for the data 
scientist!

→
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DISCRIMINATION BIAS MAY APPEAR, EVEN UNINTENTIONALLY

A linear model is used to split the data 
although it is not purely suited to their spatial 
distribution!
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A linear model is used to split the data 
although it is not purely suited to their spatial 
distribution!

Now suppose that a group of subjects  
(e.g. a geographic origin, a work context, a 
diet, …) is over-represented in the data with 
false predictions. 

Unfair decisions although this is 
unintentional!

𝑆 = 0

DISCRIMINATION BIAS MAY APPEAR, EVEN UNINTENTIONALLY
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REMARK: THERE ARE VARIOUS POTENTIAL CAUSES FOR BIAS IN MACHINE LEARNING PREDICTORS

Main causes for bias in machine learning
• Poorly annotated data
• Unbalanced data
• Under- or over-fitting
• Confounding variables

⇢ Most of them can be addressed by cautious data scientists

⇢ Confounding variables are those that are the trickiest ones 
to tackle and require a true expertise!
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CONFOUNDING VARIABLES – ICE CREAM AND SHARKS EXAMPLE

???
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???

⇢ Correlation is not causality

⇢ Here the hot temperature is the confounding variable

CONFOUNDING VARIABLES – ICE CREAM AND SHARKS EXAMPLE
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CONFOUNDING VARIABLES – HUSKIES AND WOLVES EXAMPLE (RIBEIRO ET AL, 2016)  

Goal: Automatic recognition of a husky or a wolf based on a picture
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CONFOUNDING VARIABLES – HUSKIES AND WOLVES EXAMPLE (RIBEIRO ET AL, 2016)  

…

…

Train a neural-network adapted to 
images with labelled data

Husky

WolfWolf

Husky

……
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CONFOUNDING VARIABLES – HUSKIES AND WOLVES EXAMPLE (RIBEIRO ET AL, 2016)  

False prediction using the trained neural-
network

Wolf✗
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CONFOUNDING VARIABLES – HUSKIES AND WOLVES EXAMPLE (RIBEIRO ET AL, 2016)  

Why? 

⇢ In the training set, most pictures representing a wolf also 
represent a snowy background, which is not the case for huskies.

⇢ The neural-network associated a snowy background to wolves

Wolf✗

False prediction using the trained neural-
network
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THE ARTIFICIAL INTELLIGENCE ACT (EUROPEAN COMMISSION 2021 – CURRENTLY AMENDED)

➢ Clear requirement to control algorithmic biases 

➢ Need for appropriate “metrics and probabilistic thresholds” to assess the compliance of AI systems 

➢ Need for explainable decision rules when using high risk systems 

ALGORITHMIC BIAS IN ARTIFICIAL INTELLIGENCE 
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POPULAR INDICES TO MEASURE THE BIASES IN A GROUP 

D.I.=0.33 here, which means that there are clearly more 
positive predictions in group S=1 than in group S=0.

• Makes sense for job recommendations
• Makes no sense for disease aid
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POPULAR INDICES TO MEASURE THE BIASES IN A GROUP 

E.O.=0.26 here, which means that there are clearly more 
true positive predictions in group S=1 than in group S=0.

• Makes sense for job recommendations
• Makes sense for disease aid
• Requires a ground truth

Many other indices exist, each of them explaining specific bias properties!
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POPULAR TOOLS FOR EXPLAINABILITY 

Discrimination indices like the « Disparate Impact » or the « Equal Opportunity » work on groups of test data

How to detect that a specific prediction is made for wrong reasons if the ideal prediction is unknown ⇢ use of 
explainability tools 

Wolf✗
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POPULAR TOOLS FOR EXPLAINABILITY – LIME (RIBEIRO ET AL, 2016)   

Model agnostic method 
• No need to take into account the model 

architecture
• Observe how sensitive are the output predictions 

when the input variables are perturbed
• The prediction is explained by the input variables 

related to the strongest output changes

ALGORITHMIC BIAS IN ARTIFICIAL INTELLIGENCE 
4 — Can we measure, explain or control algorithmic biases?



Laurent Risser: Explainability and robustness in machine learning

POPULAR TOOLS FOR EXPLAINABILITY – LIME (RIBEIRO ET AL, 2016)   

Works on various types of data!
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POPULAR TOOLS FOR EXPLAINABILITY – GRADCAM (SELVARAJU ET AL, 2016)   

Specialised to images with specific neural-network architectures 
• Much Faster than LIME 
• Far less flexible

Method 
overview

Typical result
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POPULAR TOOLS FOR EXPLAINABILITY – GROUP EXPLAINABILITY USING GEMS-AI (BACHOC ET AL, 2018)

Example: CelebA dataset (http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) 
• >200K celebrity images with 40 binary annotations  
•  can be the Attractive featureYi
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POPULAR TOOLS FOR EXPLAINABILITY – GROUP EXPLAINABILITY USING GEMS-AI (BACHOC ET AL, 2018)

Example: CelebA dataset (http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) 
• ResNet 18 CNN trained to predict who is attractive  87% of accurate predictions on the test set  
• What-if the average impact of pixel intensities on Predictions == Attractive for different sub-groups of the test set

→

https://github.com/XAI-ANITI/ethik

ALGORITHMIC BIAS IN ARTIFICIAL INTELLIGENCE 
4 — Can we measure, explain or control algorithmic biases?

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/XAI-ANITI/ethik


Laurent Risser: Explainability and robustness in machine learning

CONTROLLING THE LEVEL OF BIAS IN AI

To sum-up on part 4 so far
• Biases can be quantified and generally explained
• In a sense, the explanations give to the data scientists the ability to evaluate the 

robustness of the neural-networks they train

A key question is 
• How to tackle, or at least to reduce, the undesired biases when the are detected?
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CONTROLLING THE LEVEL OF BIAS IN AI

Very active field of research with some solutions that start being mature!

[Risser et al., JMIV 2022]
https://github.com/lrisser/W2reg

where

[Zafar et al., PMLR 2017]
https://github.com/mbilalzafar/fair-classification

…
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• Neural-networks outperform other A.I. models for advanced prediction/decision tasks.

• Neural-network predictions can be biased.

• Unreasonable biases will be soon sanctioned by law.

• Detection, explanation or reduction of biases is technically doable but requires an 
expertise in machine learning.
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Merci !


