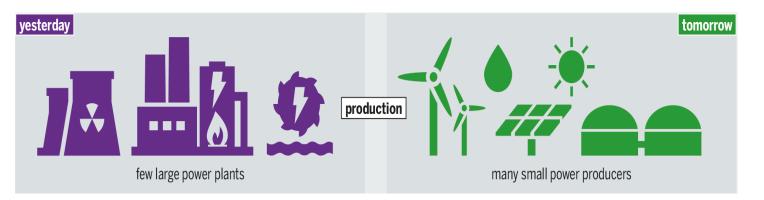
An Equilibrium Analysis of Risk-Hedging Strategies in Decentralized Electricity Markets

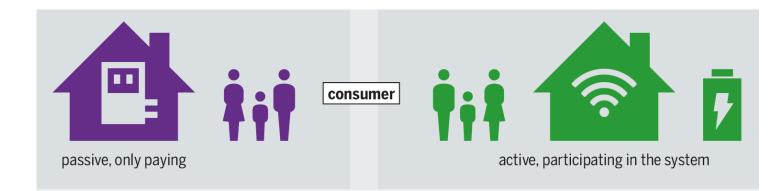
Ilia Shilov

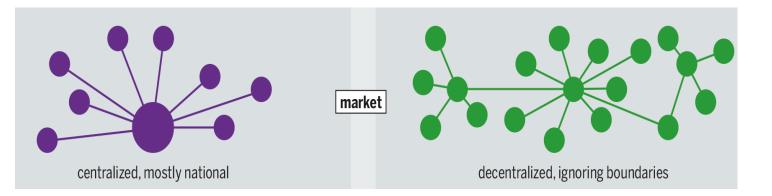
Ana Busic, Helene Le Cadre, Gonçalo de Almeida Terça



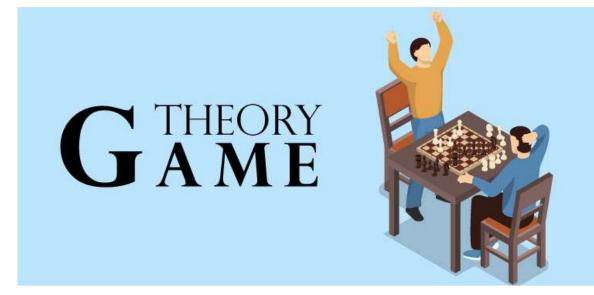
- Renewable energy sources (RES)
- Flexibility sources (batteries, consumption adjustment etc.)

- Active participation
- Strategic behavior





- Decentralized electricity markets
- Peer-to-peer, hybrid, communitybased



- Outcome of player's choice of action depends on the actions of other players
- Non-cooperative game conflicting interest over the outcome
- Static game the players take their actions only once

Game in strategic form

- \mathcal{N} set of players
- $(S_n)_{\{n \in N\}}$ set of strategies of each player
- $(\Pi_n)_{\{n \in N\}}$ cost of each player
- $\{\mathcal{N}, (S_n)_{\{n \in N\}}, (\Pi_n)_{\{n \in N\}}\}\)$ game in strategic form

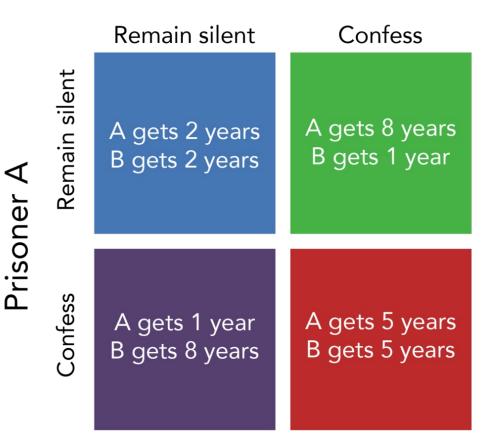
Nash equilibrium

• s^* - Nash equilibrium if

 $\Pi_n(s^*) \le \Pi_n(s, s^*_{-n}) \ \forall \ n \in \mathcal{N}$

- No player can improve the outcome by deviating from s* if other agents stick to s*
- Always exists in a non-cooperative game with mixed strategies
- One game can may also have multiple Nash equilibria
- Strategy set may depend on other players' actions (generalized NE)

Prisoner B



Game theory in decentralized electricity markets

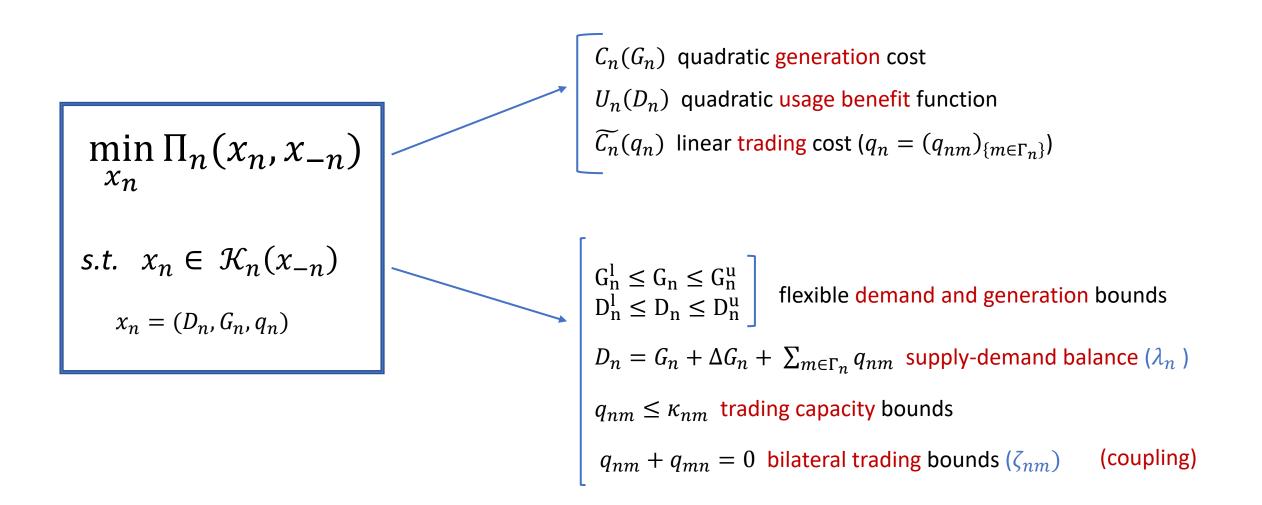
Advantages

- Includes users' strategic behaviour
- Models interactive trading between players
- Integrates pricing and incentive designs

Limitations

- Hard to directly involve human subject in the optimization process
- Dependent on the performance of the communication network

Electricity trading problem

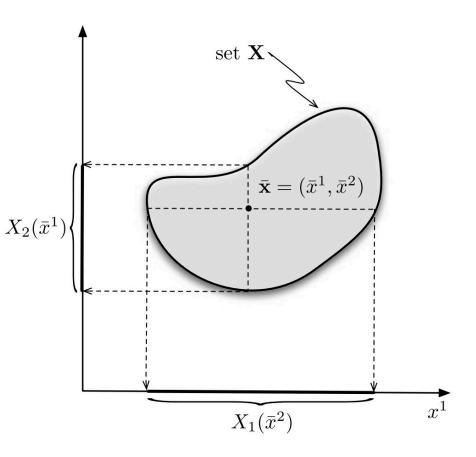


Generalized Nash Equilibrium

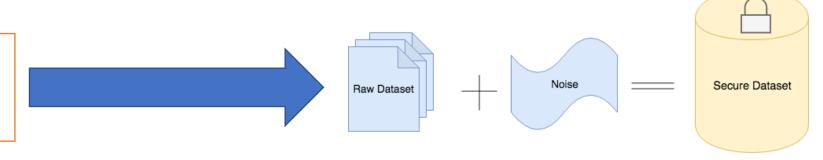
• A Generalized Nash Equilibrium (GNE) is a vector $x_n = (D_n, G_n, q_n)_n$ that solves the maximization problems above or, equivalently, a vector $x_n = (D_n, G_n, q_n)_n$ such that x_n solve the system KKT_n for each n

• A Variational Equilibrium (VE) is a GNE such that, in addition, the Lagrangian multipliers associated to the coupling constraints are equal

 $\zeta_{nm} = \zeta_{mn} \ \forall \ n \in \mathcal{N}, \forall \ m \in \Gamma_n$

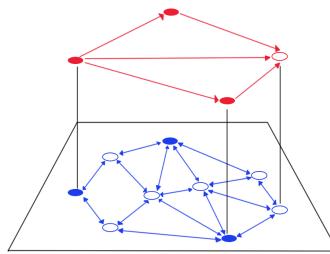


Privacy



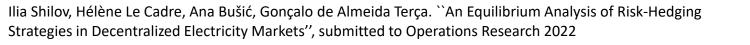
Market level

I. Shilov, H. Le Cadre and A. Bušić, "Privacy Impact on Generalized Nash Equilibrium in Peer-to-Peer Electricity Market", OR letters, 2021



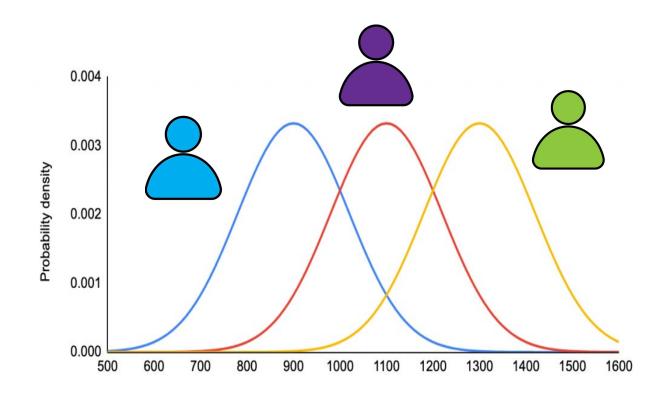
Including network constraints

I. Shilov, H. Le Cadre, Ana Bušić ``A Generalized Nash Equilibrium analysis of the interaction between a peer-to-peer financial market and the distribution grid'', Proceedings of IEEE SmartGridComm 21', 2021



Heterogeneous Risk-Aversion

- Risk-neutral market design and riskaverse model.
- Heterogeneity in agents' risk attitudes
- In the latter prosumers are endowed with coherent risk measures reflecting



Coherent Risk Measure, CVaR

 χ_n - risk attitude of *n*, $VaR_n = \min_{\eta_n} \{\eta_n \mid \mathbb{P}[\Pi_n^t \leq \eta_n] = \chi_n\}.$

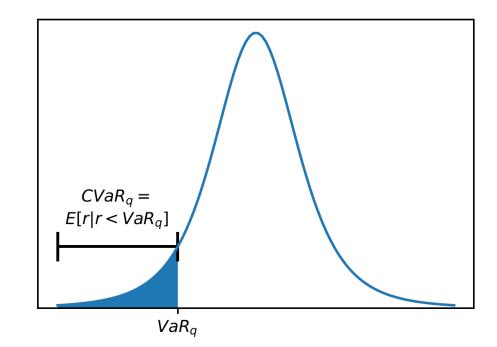
For our problem we write cVaR as follows:

$$R[\Pi_n(t)] = \eta_n + \frac{1}{(1-\chi_n)} \sum_{t \in t} p_t [\Pi_n(t) - \eta_n]^+.$$

The epigraph form to overcome non-differentiability:

$$R[\Pi_n(t)] = \eta_n + \frac{1}{(1-\chi_n)} \sum_{t \in t} p_t u_n^t,$$

with $u_n^t \ge 0$ and $\Pi_n(t) - \eta_n \le u_n^t$ with dual variables π_n^t and τ_n^t respectively.



Risk-Hedging

In Decentralized Electricity Markets

1. One-stage design with inter-agent contract trading

Endogenous risk trading: the price γ^t and the quantity bought(sold) by agent *n* is W_n^t .

$$R_n[\Pi_n^t] = \eta_n + \sum_{t \in \mathcal{T}} \gamma^t W_n^t + \frac{1}{(1 - \chi_n)} \sum_{t \in \mathcal{T}} p^t [\Pi_n^t - W_n^t - \eta_n]^+.$$

2. Stackelberg game where the insurance company acts as a leader and prosumers are followers

Exogenous agent: fixed prices α_n^t per scenario t and contracts J_n^t

Stackelberg game

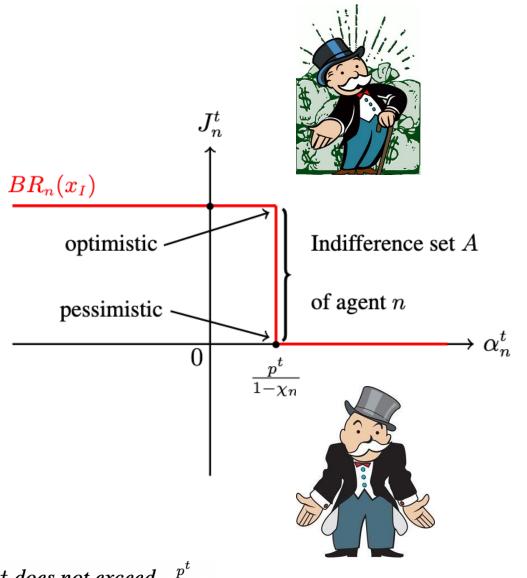
 $\min_{(\boldsymbol{\alpha}_n^t,\overline{J}^t)_{n\in\mathcal{N}}} \qquad \sum_{n\in\mathcal{N}} \Big[-\sum_{t\in\mathcal{T}} \boldsymbol{\alpha}_n^t J_n^t + \sum_{t\in\mathcal{T}} p^t J_n^t \Big]$

 $s.t. \qquad 0 \leq \alpha_n^t \quad \forall n \in \mathcal{N}$

$$\begin{aligned} \forall n \in \mathcal{N} \quad J_n^t \in \operatorname*{arg\,min}_{J_n^t, \boldsymbol{x}_n^t} \overbrace{t \in \mathcal{T}}^{} \alpha_n^t J_n^t + \eta_n + \frac{1}{(1 - \chi_n)} \sum_{t \in \mathcal{T}} p^t u_n^t \\ s.t. \qquad s.t. \qquad x_n \in \tilde{\mathcal{K}}_n(\boldsymbol{x}_{-n}) \quad \forall n \in \mathcal{N} \\ 0 \leq J_n^t \leq \overline{J^t} \quad \forall n \in \mathcal{N} \end{aligned}$$

Stackelberg game

- 1. Optimistic agents cooperate with the insurance company
- 2. Pessimistic agents are reluctant to act in favor of insurance company
- 3. Might be no solution in **pessimistic** framework!

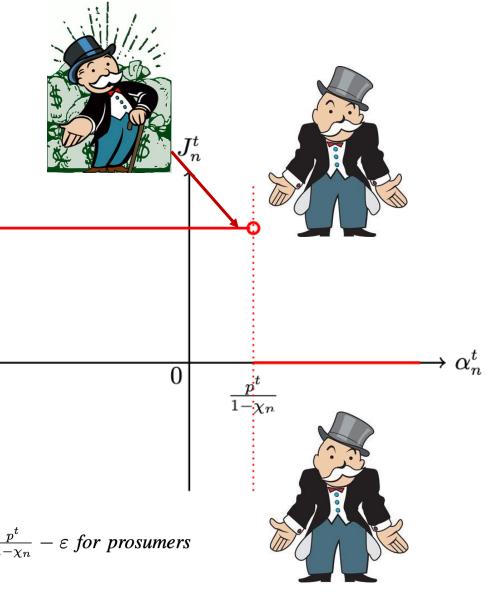


LEMMA 1. The price α_n^t of the insurances J_n^t for agent n and scenario t does not exceed $\frac{p^t}{1-\chi_n}$.

Stackelberg game

- 1. Optimistic agents cooperate with the insurance company
- 2. Pessimistic agents are reluctant to act in favor of insurance company
- 3. Might be no solution in **pessimistic** framework!
- 4. Price incentives should help!

PROPOSITION 4. For any given ε , if insurance company sets the prices $\alpha_n^t = \frac{p^t}{1-\chi_n} - \varepsilon$ for prosumers $n \in \mathcal{N}'$, then the problem (14) has a solution.



Pessimitic reformulation

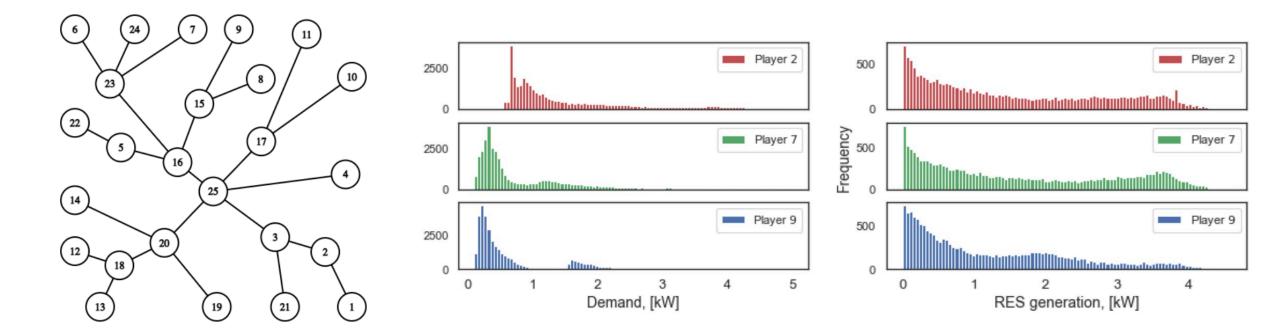
$$egin{aligned} \min_{x_I,(oldsymbol{x}_n^L,oldsymbol{z}_n^L)_n} & \Pi_I(x_I,oldsymbol{x}_n^L) \ & s.t. & x_I \in X_I \ & (x_n^L,z_n^L) \in E(x_I) \quad orall n \in \mathcal{N} \end{aligned}$$

where $E(x_I)$ is the equilibrium set of the following GNEP:

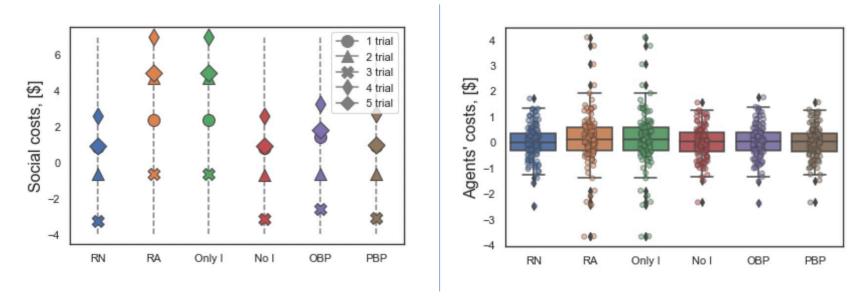
$$egin{aligned} \min_{x_n^L} & -\Pi_I(x_I,oldsymbol{x}_n^L) & \min_{z_n^L} & \Pi_n(x_I,oldsymbol{x}_n^L) \ s.t. & x_n^L \in X_n(x_I,oldsymbol{x}_{-n}^L) & s.t. & z_n^L \in X_n(x_I,oldsymbol{x}_{-n}^L) \ \Pi_n(x_I,oldsymbol{x}_n^L) & \leq \Pi_n(x_I,oldsymbol{z}_n^L) \end{aligned}$$

Some numerical experiments

- We use residential data provided by Pecan Street Pecan Street (2022) for Austin, Texas.
- The data consists of 15-minutes intervals specifying renewable generation, load and facilities energy consumption for 25 individual homes



Some numerical results



- (RN) risk-neutral
- (RA) risk-averse
- (Only I) two level with only I
- (No I) one level with risk-hedging
- (OBP) two-level optimistic
- (PBP) two-level pessimistic

	RN	RA	Only I	No I	OBP	PBP
SC [\$]	0.101	3.686	3.686	0.186	0.192	0.162
I's cost [\$]	-	-	-1.41	-	-0.437	-0.018
Fairness		-	+	-	-	-
Equity		-	-	+	+	+

Conclusions

- Inclusion of Insurance Company leads to a Stackelberg Game
- In it's **pessimistic formulation** there might be no solution
- This problem can be overcome by designing **price-based incentives**
- These incentives slightly decrease the profits of the insurance company
- But also allow prosumers to decrease their costs