

Confidentiality

This document contains Framatome's know-how

EXPORT CONTROL

AL = N

ECCN = N

Goods labeled with "AL not equal to N" are subject to European or German export authorization when being exported within or out of the EU.

Goods labeled with "ECCN not equal to N or EAR99" are subject to U.S. reexport authorization. Even without a label, or with label: "AL:N" or "ECCN:N" or "ECCN:EAR99," authorization may be required due to the final whereabouts and purpose for which the goods are to be used.

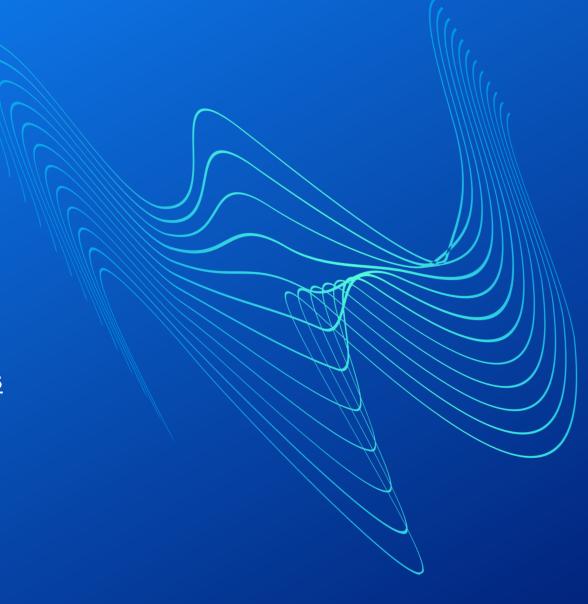
FRAMATOME'S INFORMATION PROTECTION RULES

C1 : This document and any and all information contained therein and/or disclosed in discussions supported by this document are **restricted**.

C2: This document and any and all information contained therein and/or disclosed in discussions supported by this document are sensitive and **Framatome confidential**, such as its disclosure, alteration or loss are detrimental with a significant-to-high impact for Framatome.

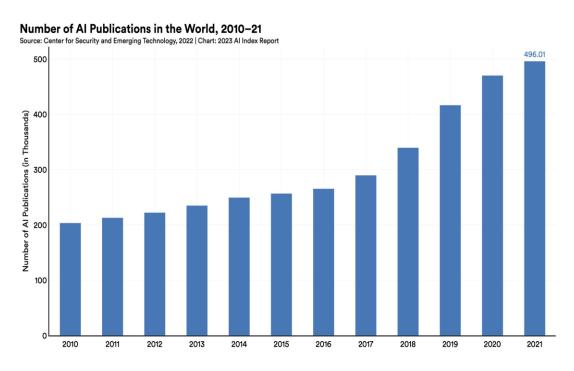
The document, if disclosed, and any information it contains are intended for the sole attendees. The disclosure or reference to such information or document shall be made only on a proper judgment basis and by mentioning expressly "this information shall not be disclosed / transferred without prior consent".

C3: This document and any and all information contained therein and/or disclosed in discussions supported by this document are classified Framatome Secret.

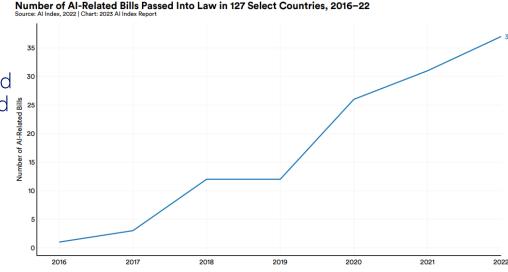

Each one must commit to keep secret any written or oral information disclosed during the meeting. It is forbidden to disclose it to any legal entity and any individual (including within Framatome) without prior consent of the meeting chairman.

This document and any and all information contained therein and/or disclosed in discussions supported by this document, are confidential, protected by applicable intellectual property regulations and contain data subject to trade secrets regulations. Any reproduction, alteration, disclosure to any third party and/or publication in whole or in part of this document and/or its content is strictly prohibited without prior written express approval of Framatome. This document and any information it contains shall not be used for any other purpose than the one for which they were provided. Legal and disciplinary actions may be taken against any infringer and/or any person breaching the aforementioned obligations.


Content


- 1. DSAM Pole presentation & perimeter
- 2. Innovative Embedded Safety Systems
- 3. Advanced Safety Analysis (BEPU) Methods
- 4. Data Analytics & Computer Vision
- 5. Scientific Computer Codes modeling and softwares
- 6. External Partnerships
- 7. Perspectives and Conclusions

Al context and industrial applications


- Al field is growing at exponential rate,
 - Important venture capital funding and major IT & industrial companies are fueling billions of \$ in the field
 - Whereas until 2014 most significant machine learning systems (ref. Stanford 2023 AI index report) were released by academia, since 2022 industry has taken over
 - How to embrace this ongoing revolution for nuclear safety critical applications?

AI Act and regulatory challenges (1/2)

- Nuclear field: already strong nuclear safety regulatory rules are needed to license safety related processes and systems
- AI field: European Commission published its first proposal "AI Act" in April 2021, official release expected at the end of 2023
 - o USA and China leading the way of AI-Related Bills
 - o AI Label and Certification depending on the criticality of the applications, the sectors, and the degree of human feedback
- Potential future Safety Authorities guidelines specific to nuclear field involving AI is expected in addition to AI Act and the currently used safety rules (computer code qualification processes)
- Safety principles will be probably mandatory for AI social and regulatory bodies acceptance, as it has been the case for nuclear industry,
- ongoing IAEA technical meetings on safety impact of AI
- EDF group AI methodology for critical applications: interpretability, trustworthiness and robustness of AI algorithms to cope with these upcoming requirements

AI Act and regulatory challenges (2/2)

___ Main publications

7 pillars for Trustworthy Al

1. Human agency and oversight

Al empowering human beings while ensuring oversight mechanisms such as humani-inthe-loop

4. Transparency

Traceability, explainability and communication of all predictions according to business and regulatory constraints

2. Technical robustness and safety

The reliability of the algorithms in boundary cases, and the protection against malicious risks

5. Diversity, non-discrimination and equity

Bias detection and mitigation to avoid unfair bias and accessibility of Al systems to all regardless of any disability 3. Privacy and data governance

Compliance with regulations on personal data such as the GDPR

6. Environmental and societal wellbeing

Alignment of business and environmental/societal interests through optimization of training and resources

7. Accountability

A governance adapted to the Al functionality, integrating all stakeholders and building auditable Al systems

Framatome Business Units Activities

Engineering & Design Authority - DTI

BU Development, design and licensing of nuclear steam supply systems (NSSS) and associated services, including worldwide Technical Centers, Data Science & Applied Math pole to support all the BUs

Fuel BU

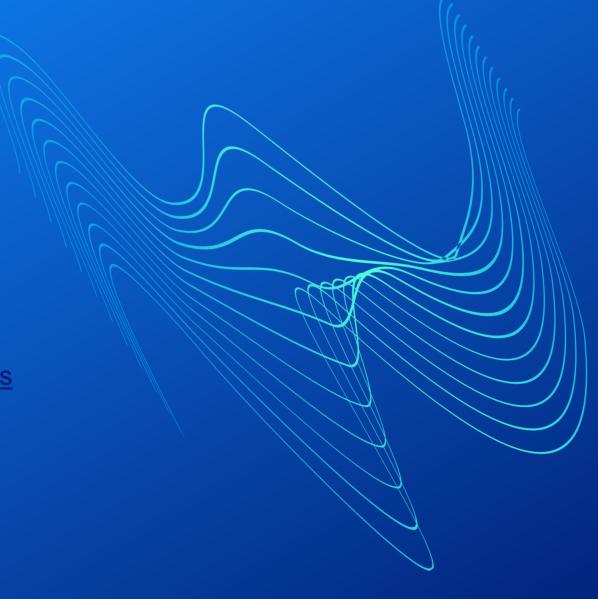
Development, design, licensing and fabrication of fuel assemblies and core components for all types of light water reactors (PWR, BWR, VVER) as well as for research reactors. Development of zirconium alloy components.

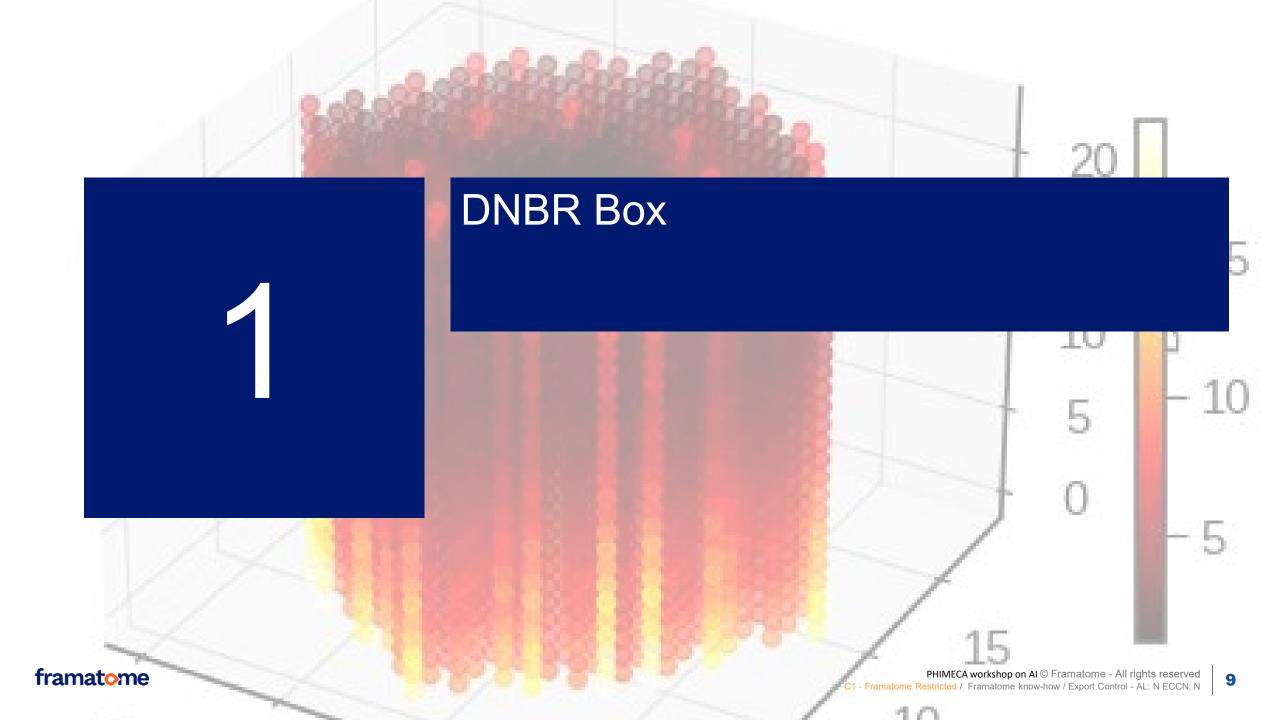
Projects and Components Manufacturing - PCM BU

Design and manufacturing of heavy and mobile components for nuclear islands. Management and execution of nuclear reactor new build projects, and component replacement projects.

Installed Base BU

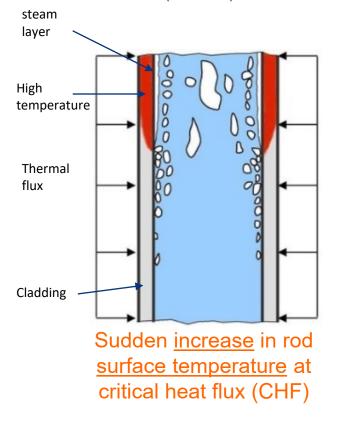
Products and services to maintain, modernize and extend the service life of facilities in operations; commission new facilities and support to decommissioning & dismantling activities.




Instrumentation & Control – IC BU

Design and manufacturing of automation and instrumentation technologies for the safe, sustainable and economic operation of nuclear power plants.

Content


- 1. DSAM Pole presentation & perimeter
- 2. Innovative Embedded Safety Systems
- 3. Advanced Safety Analysis (BEPU) Methods
- 4. Data Analytics & Computer Vision
- 5. Scientific Computer Codes modeling and softwares
- 6. External Partnerships
- 7. Perspectives and Conclusions

DNB generic protection channel in PWR safety systems

 One of the most important tasks in a PWR reactor core design regarding safety analysis and operating performance is the prediction of thermal margins with respect to the boiling crisis, assessed with the DNB ratio (DNBR)

DNB risk: breach of the first barrier

- To avoid any damage to the cladding due to an excessive increase in the temperature, the thermal heat flux must not exceed a given value: the critical heat flux $\phi_{critical}$ (CHF)
- The CHF is determined experimentally as an empirical proprietary correlation of the local Thermal-Hydraulics (TH) parameters (P: pressure, G: mass flow, X: quality) and the geometrical characteristics of the fuel assembly design
- The DNBR is assessed as the ratio between the CHF and the local thermal heat flux ϕ_{local} during safety studies simulations and also online with a simplified algorithm for 4 loops and EPR reactors:

$$DNBR(x, y, z) = \frac{\phi_{critical}(P, G, X, geometry)}{\phi_{local}(x, y, z)}$$

Overview of DNB generic protection channel (2)

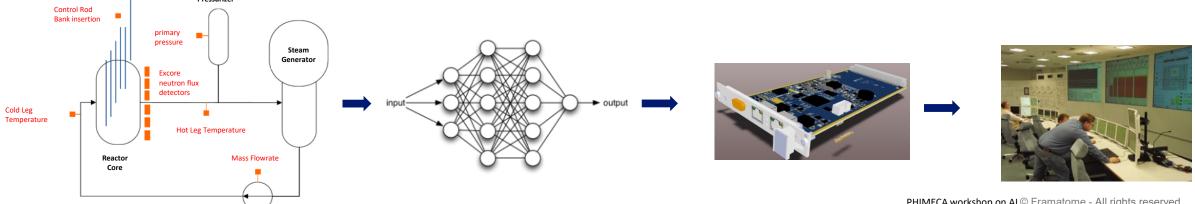
- Framatome 1300 MWe, N4 and EPR: functional units of the safety systems are directly assessing the online Linear Power Density (LPD) and DNBR to improve margins
- Digital I&C system based on evolution of core instrumentation
 - French 1300MWe/N4: introduction of simplified DNBR evaluation in RPS using SPINLINE technology from multi stages excore measurements
 - EPR: DNBR calculated in RPS based on TELEPERM XS (TXS) technology from in core Co SPNDs measurements
- **Benefits of the current solution**: online DNBR algorithm relies on a simplified physical modeling compared to a reactor trip / surveillance threshold including different uncertainties and penalties to insure a conservative reconstruction with respect to reference simulations
- It is penalized with respect to the 3D reference code simulations to compensate the inaccuracy of the local TH
 variables reconstruction thus insuring its conservatism through epistemic parameters called the "Bias Curves"

$$DNBR(x, y, z) = \frac{\phi_{critical} \left(P, G \middle/_{FGFR}, X * FHFR, geometry, (x, y, z) \right)}{\phi_{local}(x, y, z)}$$

Drawbacks

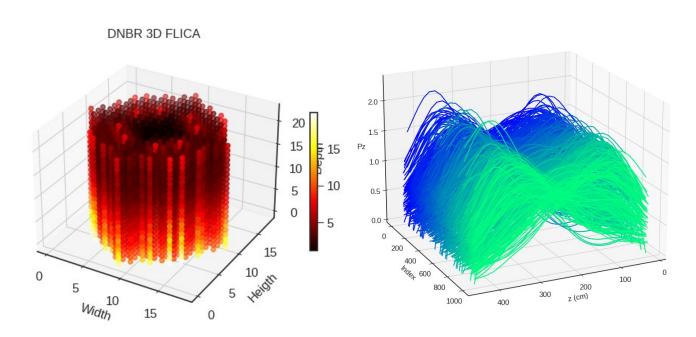
- Algorithmic nature of the DNBR online algorithm processing though simplified: complex implementation and qualification processes
- Penalizing online DNBR reconstruction and error variability: risk of additional global penalties

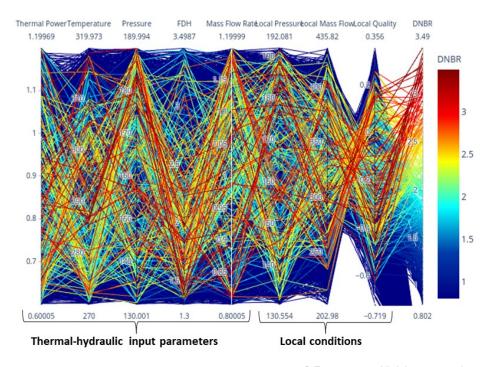
DNBR Box: an embedded Al algorithm in the I&C safety system


Idea of DNBR Box

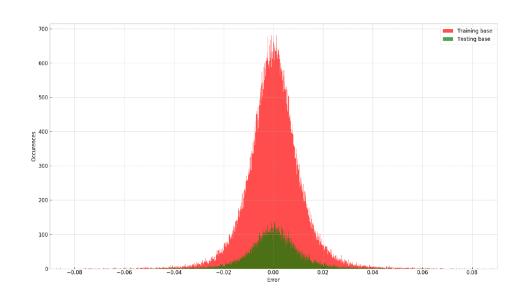
- To use an AI algorithm trained on 3D core physics reference codes simulations
- To be embedded on innovative I&C hardware capabilities: TXS Compact based on FPGA (Field Programmable Gate Array) chipset technology

Benefits of the Box concept


Reactor Coolant Pump


- Same accuracy as the reference code
- Avoiding the complex implementation of state-of-the-art codes within safety
 I&C => same determinism (functional) as the legacy △T generic channels
- FPGA chipset perfectly suited for fast inference of AI algorithms (neural networks)

DNBR Box – Learning / Validation Data base


- Lack of online physical modeling must be compensated by a big and representative database to train and validate the model.
- We sampled a database on N4 NPP design:
 - o 1000 Thermal-Hydraulic state-points \otimes 6000 axial power distributions continuously perturbed axial power shape Pz from [-50%;+70%] core neutronics-TH 3D calculations => 6 x 10 6 data 3D core simulations.
 - o Data filtering on local TH conditions belonging to the CHF validity domain and DNBR range
 - o Leads to 3 x 10⁶ core statepoints data => big data set of 2To in csv format

DNBR Box: results of the learning & validation phases

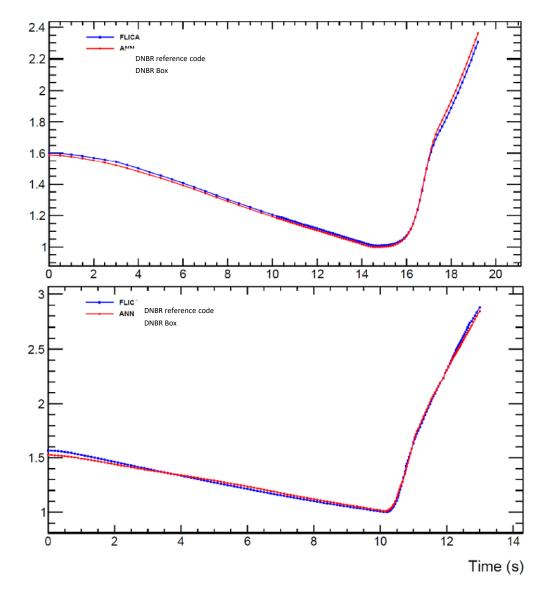
- Learning and validation of DNBR box: database of millions of 3D core statepoints issued from neutronics-thermalhydraulics reference code simulations
- Very good accuracy from performance metrics
- Same performance on EPR design from 6
 SPNDs LPD and 3 TH features

Metrics	Learning base (80 %)	Validation base (20 %)
MSE	1.4×10^{-4}	$1.3 imes 10^{-4}$
Q^2	0.999	0.999

DNBR Box: test phase on accidental transients simulations

ONBR

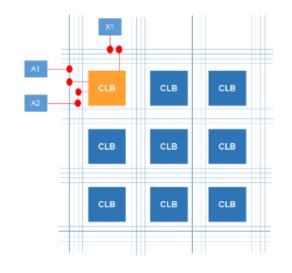
DNBR


- Validation beyond the classical heuristics
 - direct replacement of the reference code by DNBR box algorithm in the complex multiphysics accidental transient simulation to perform advanced validation
- TH system core 3D TH code (Uncontrolled Rod Bank Withdrawal, reactor at Power):
 Neutronics 0D modeling with MANTA accidental TH system code

TH system – 1D core Neutronics code - 3D TH code

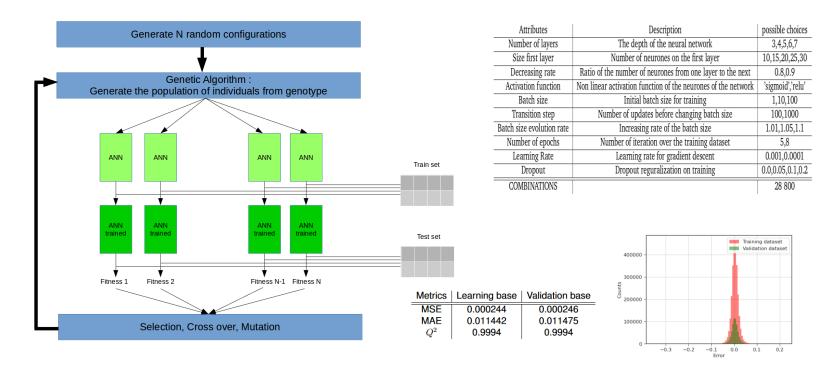
(Uncontrolled Rod Bank Withdrawal, reactor at Power):

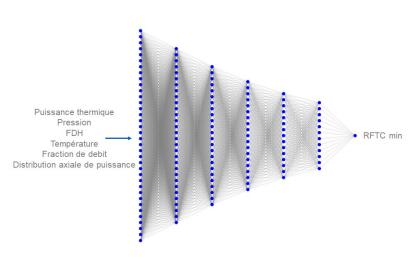
Neutronics 1D modeling with SMART code coupled to MANTA code (varying axial power distribution fom -10%PN to +40%PN during transient analysis)


• Phenomenological tests with true accidental study simulation succeeded.

TELEPERM XS Compact: a new FPGA-based safety platform

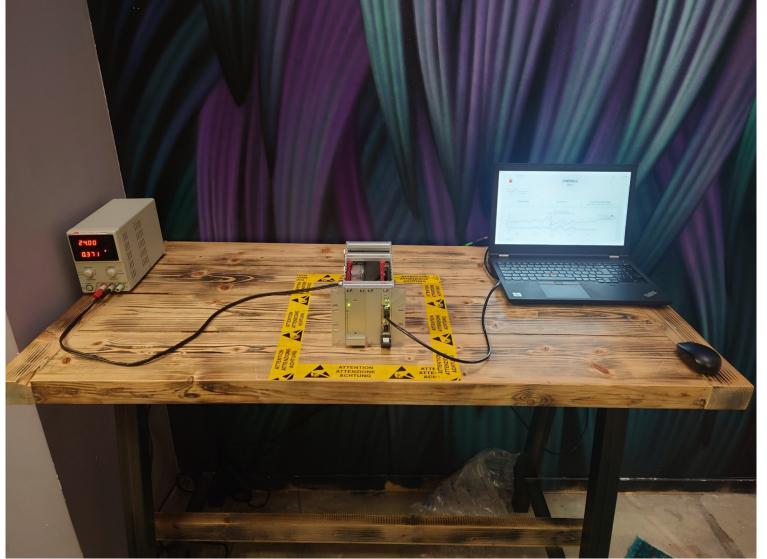
- Nuclear-grade safety I&C platform developed by IC BU Framatome as part of TXS product line (used e.g. for EPR protection system already)
- Major investment of IC BU and main support for growth of market share in the future
- Generic qualification following IEC/RCC-E nuclear standards, compliant with IAEA SSG-39
- Innovative patented concept using FPGA (Field Programmable Gate Array) and high-end configuration software
- FPGA are intensively used for aeronautics, military and space embedded systems, and perfectly suited for fast inference of AI algorithms
- TXS Compact qualification will be finalized in 2023, first commercial application expected in 2024
- Technical basis for DNBR Box proof of concept





DNBR Box complexity optimization with Genetics Algorithms

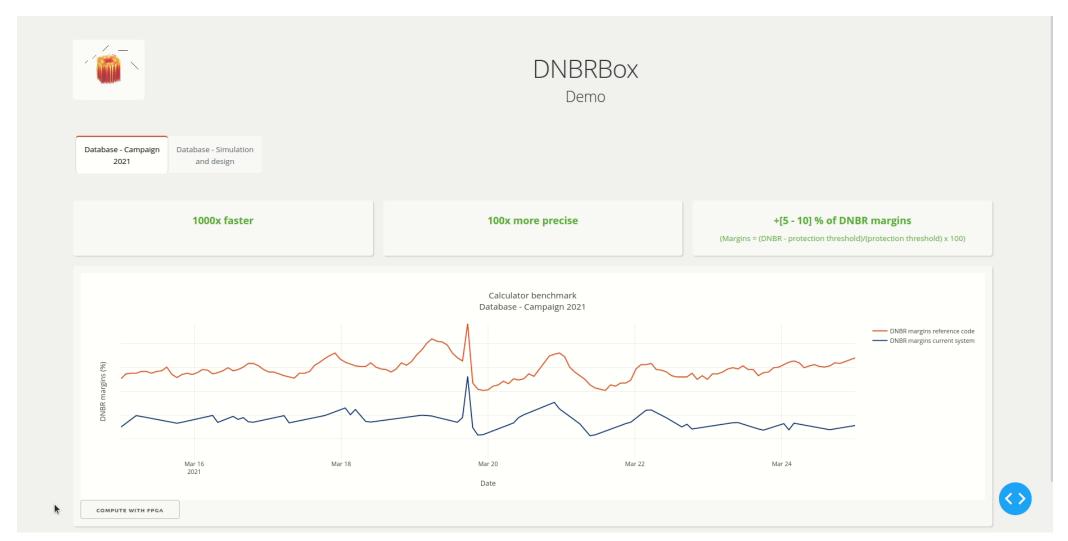
- Safe implementation on TXS Compact requires optimization of the number of variables due to safetyrelated constraints
- Explore the large scale hyper-parameters space with Black Box optimization algorithms to reduce the complexity to cope with safety I&C systems requirements
- Reduce the complexity by one order of magnitude

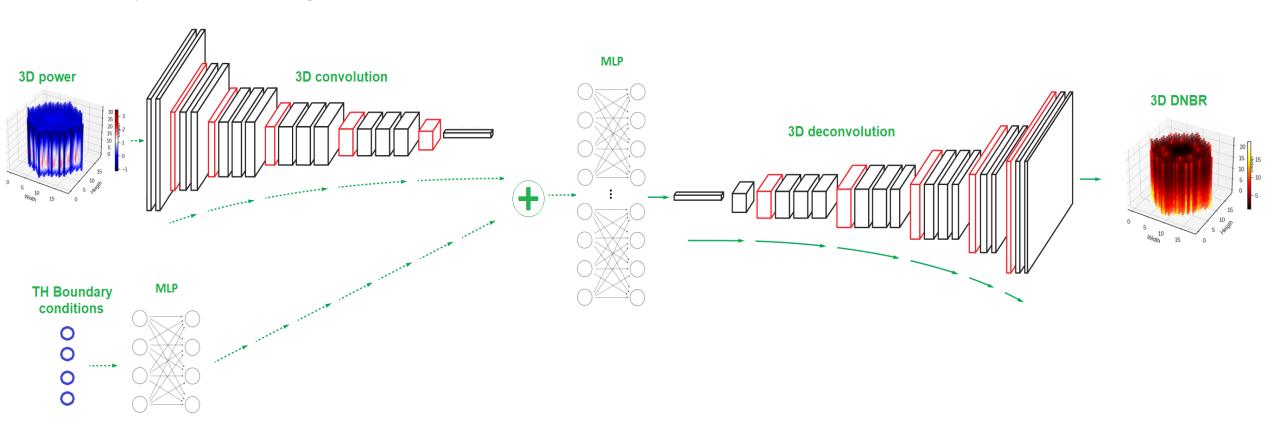

DNBR Box implementation on TELEPERM XS Compact

- Proof-of-concept implementation of a fast inference AI algorithms based on reference computer codes simulations has been achieved on a representative industrial next generation of Framatome safety automation system based on the TXS Compact technology
- Benchmark with 1 million test vectors (vs 30k for the data base of current projects)
- => improvement of the core statepoints representativeness, validation and qualification process
- Improvement of the processing time
 - FPGA is perfectly suited for fast processing of neural networks, even in this TXS Compact safety grade configuration
 - 212 µs DNBR Box latency vs 200 ms for the current DNBR algorithm solution

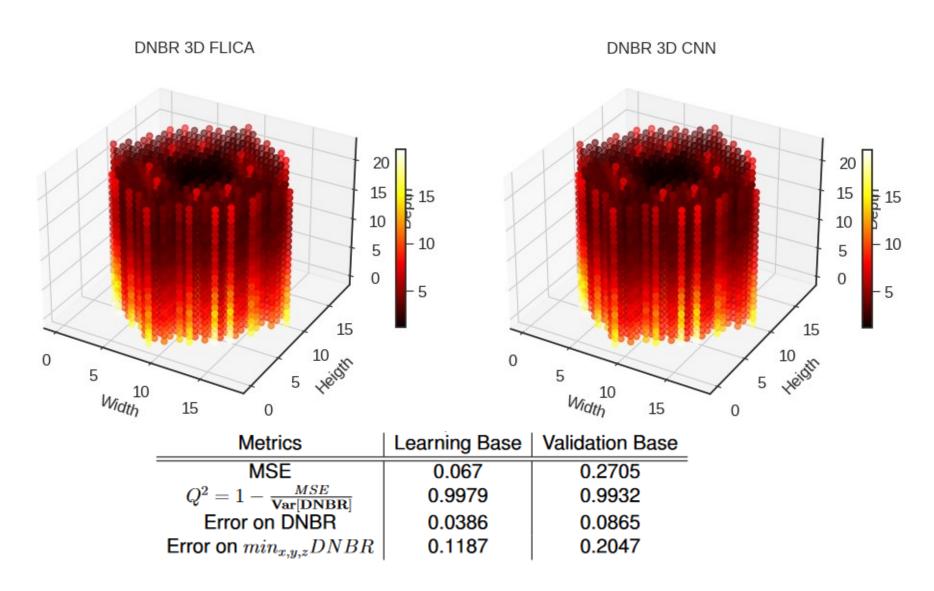
Accuracy improvement
vs the current solution

	DNBR Box TXS Compact vs software implementation (Python on HPC cluster)	DNBR Box vs 3D reference code
Error assessed on 1Million 3D reference core codes test dataset	$2.03\times10^{\text{-}13}$ Outputs identical btw hardware and software	1.94×10^{-4} Results close to the reference code simulations

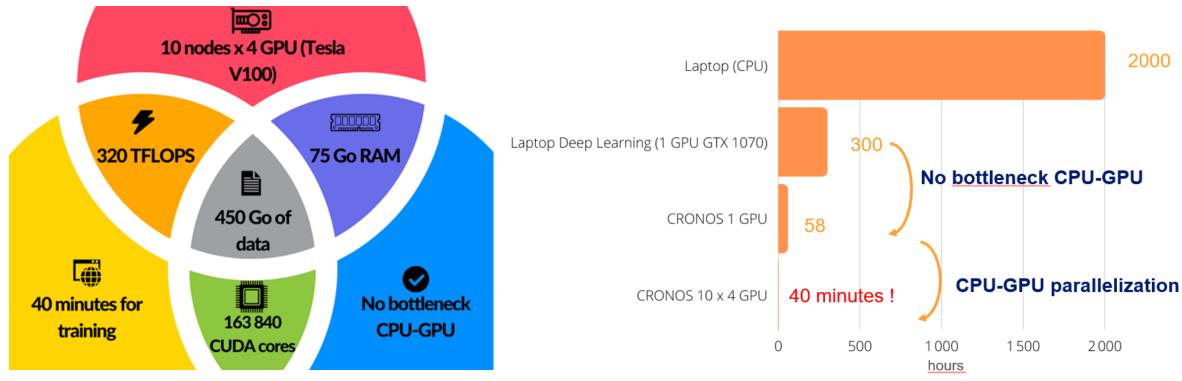

Live demo of the prototype to illustrate the proof of concept


DNBR Box- benchmark on test data from N4 NPP with EDF

Benchmark of DNBR prediction on real life transients between reference simulation, current simplified algorithm and DNBR box


DNBR Box 3D – perspectives

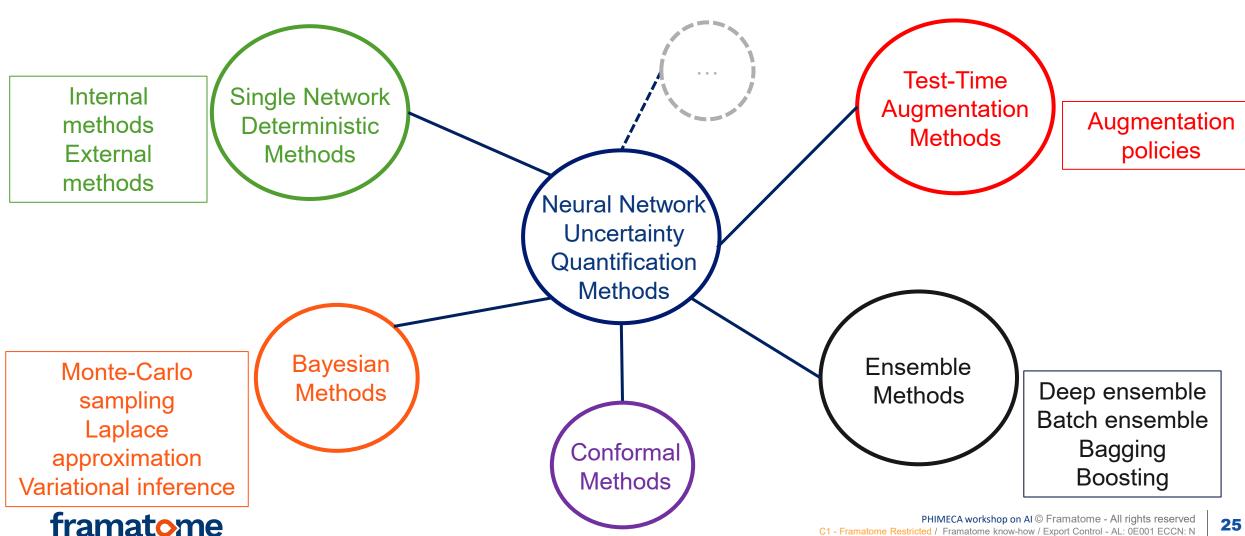
- Using convolutional network to take into account the geometry of the problem, in particular the spatial correlation of the nuclear power distribution as a 3D field, to predict the whole DNBR field in the core using a Convolutional Neural Network (CNN).
- We could try to combine neural net with Gaussian Processes => but we believe in the fast computation capabilities of DL algorithms embedded on FPGA hardware.


DNBR Box 3D – perspectives

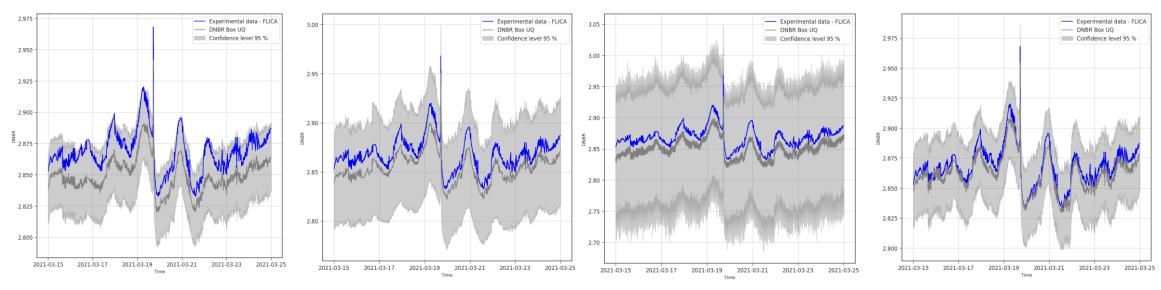
Results

Computing power challenges

- Computation has been made on the EDF/Framatome HPC CRONOS cluster which includes 81600 CPU cores with a frequency of 2.4 GHz that leads to 4.2993 PFlops/s.
 - It was ranked 67 in 2021 in the top500 HPC in the world.
 - CRONOS includes also 45 nodes of 4 GPU NVIDIA TESLA V100 SMX2 (with 5120 NVIDIA CUDA cores and a frequency of 1.245 GHz).


Open questions for safety critical Al applications

- For critical applications like in nuclear safety, aeronautics, autonomous vehicle, medicine, etc. it is important (even mandatory regarding the safety authorities and regulatory bodies upcoming requirements) to be confident on the predictions of the model and on its uncertainties.
- Can we train a model to predict with a good accuracy and in the same time to estimate with a good confidence the uncertainty?
- Can we trust the uncertainty estimation in test time, out-of-distribution time?
- Can we implement these methods on specific hardware like Field Programmable Gate Array (FPGA)?


Robustness challenge: UQ methods in Deep Learning

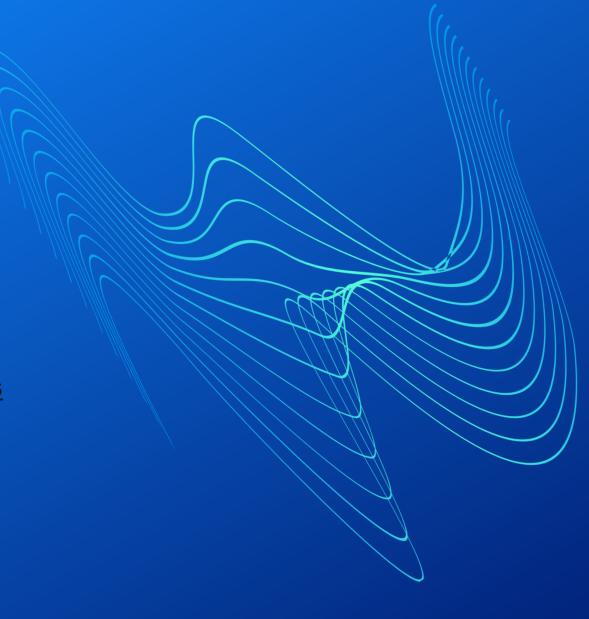
 Several Uncertainty Quantification (UQ) methods exist depending on the number of forward passes or based on the nature (deterministic or stochastic) of the model.

Open questions for critical applications

- Several UQ methods exist, but they are not equal.
- Differences in theoretical framework, in estimation time, in theoretical guarantees, in programming implementation, etc.
- Difference in behavior with respect to the dataset: train dataset, test dataset, distribution shift dataset, out-of-distribution dataset.
- For nuclear protection system based on embedded inference DL with UQ estimation on real distribution shift dataset: difference in terms of prediction accuracy and uncertainty estimation confidence.

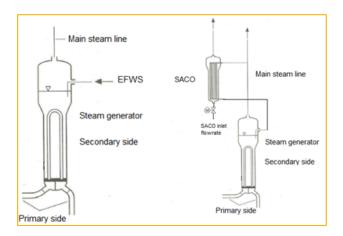
Bayesian Neural Network

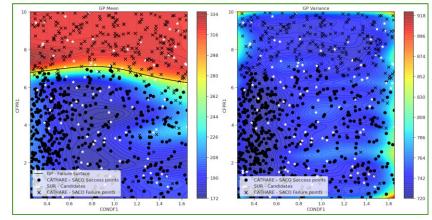
Deep Ensemble


Monte-Carlo Drop-out

Conformal calibration

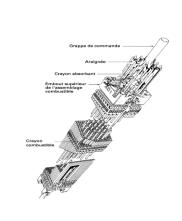
Content

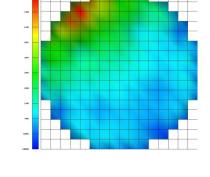

- 1. DSAM Pole presentation & perimeter
- 2. Innovative Embedded Safety Systems
- 3. Advanced Safety Analysis (BEPU) Methods
- 4. Data Analytics & Computer Vision
- 5. Scientific Computer Codes modeling and softwares
- 6. External Partnerships
- 7. Perspectives and Conclusions

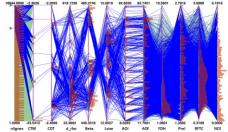


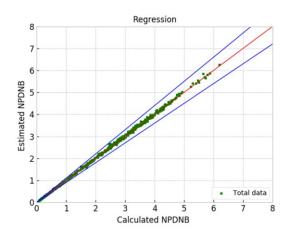
Robustness of Safety Analysis – BEPU methods

Safety Analysis Report

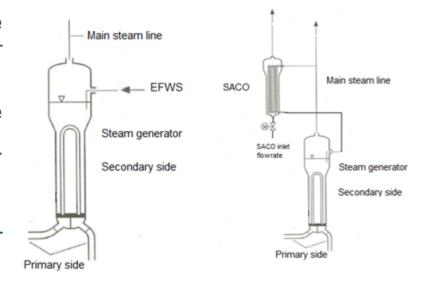

Advanced safety BEPU methodologies ("Best Estimate Plus Uncertainty"), Uncertainty Quantification and sensitivity analysis for Multi-physics / Multi-scale simulation






Typical application

Robustness improvement of safety demonstration, Reliability Assessment of passive systems (PSA): Adaptive design of experiments (DoE) strategy based on Bayesian optimization and GP, to tackle the computing cost challenges



Bayesian optimization for failure probability estimation using metamodel

- The goal is to evaluate the probability of failure of a passive system called SACO (safety condenser) for steam generators.
- For next generation of PWRs, Framatome and EDF study the possibility to substitute the steam generator emergency feedwater system (EFWS) by a safety condenser.
- The Probabilistic Safety Analyses (PSA) needs to introduce the reliability evaluation of the passive system which relies on precise multiphysics simulations to catch the failure physical modes
- The answer is given by an application of reliability evaluation for passive system.
- But the number of simulations to explore very low failure probabilities is very high (few millions of Cathare simulation).
- Thus, it needs metamodels to reproduce the Cathare code behavior.

Context

- In a context of system design or system reliability evaluation, we are facing a complex problem:
 - multi-parameters phenomenon (large dimensions);
 - low probability events.
- The classical simulation tools (thermal-hydraulics system code) are costly in terms of CPU time.

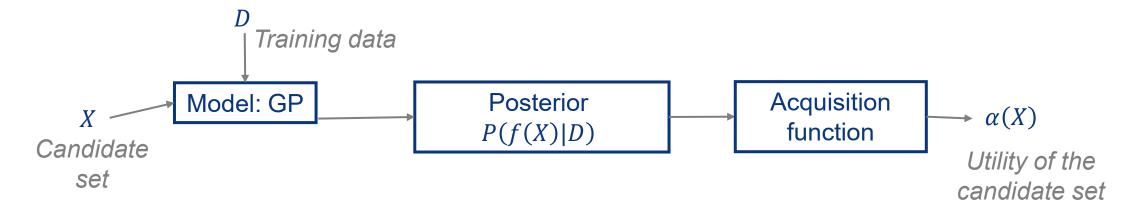
Needs metamodels to reproduce the TH code behavior in the context of costly reference code and/or statistical methodology

- The use of metamodels (like Gaussian Process GP), by allowing a large amount of simulations, seems to offer a promising strategy.
- But to converge to:
 - the best design;
 - the most precise failure;
 - and robust predictions.

Needs Bayesian optimization to build the adequate Design of Experiments (DoE).

Context

Legend: Objective of the use of the Bayesian optimization. DoE for GP training Bayesian optimization New points Area of Area of interest interest Input space Input space GP reduced failure region GP failure region

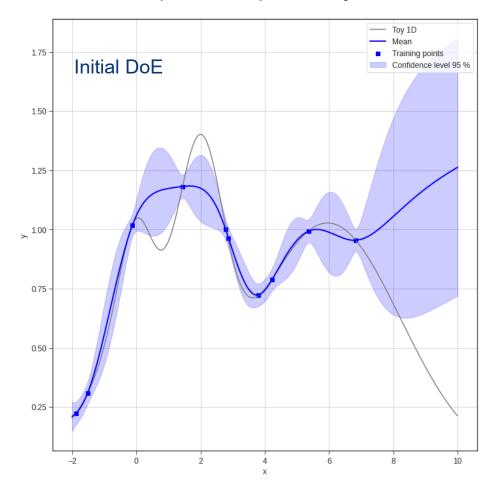


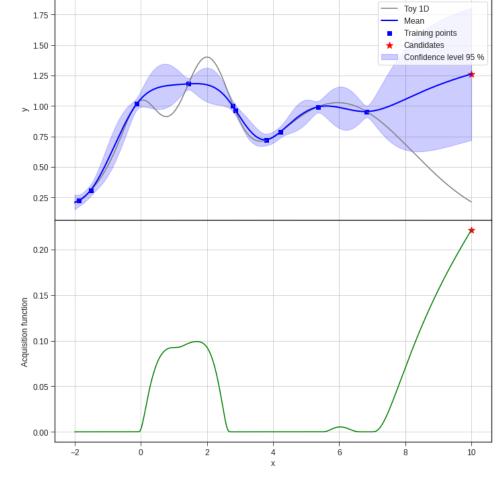
Bayesian optimization

 Bayesian optimization is a sequential design strategy for global optimization of black-box functions (i.e. the gradient or the function can be unknown) like complex reference computer codes.

Black-Box optimization: f $x \longrightarrow ?$ $\max_{x \in X} f(x)$

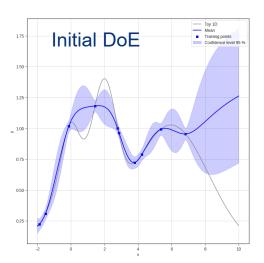
Bayesian optimization:

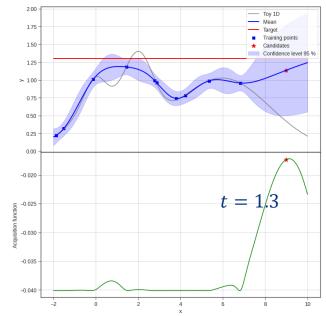



Reference: J. Mockus, On Bayesian Methods for Seeking the Extremum, Optimization Techniques, 400-404, 1974.

Simple acquisition function

• Expected Improvement (EI): $EI(x) = \left(m(x) - f(x^*)\right) \Phi\left(\frac{m(x) - f(x^*)}{\sigma(x)}\right) + \sigma(x) \varphi\left(\frac{m(x) - f(x^*)}{\sigma(x)}\right)$ where Φ and φ are respectively the CDF and the PDF of the Normal law.





One-step look ahead acquisition function for contour approximation

- Stepwise Uncertainty Reduction (SUR): $SUR(x^{n+1}) = E\left[\int_X \Phi(a(x))\left(1 \Phi(a(x))\right)dx\right] = \int_X \Phi_2\left(\begin{pmatrix} a(x) \\ -a(x) \end{pmatrix}, \begin{pmatrix} c(x) & 1 c(x) \\ 1 c(x) & c(x) \end{pmatrix}\right)dx$ where $a(x) = (m(x) t)/\sigma_{n+1}(x)$ and $c(x) = \sigma_n^2(x)/\sigma_{n+1}^2(x)$.
- SUR is powerful but needs a double integration => quite expensive.
- A q-batch approach of SUR exists.

References:

- Bect, J., D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez, Sequential design of computer experiments for the estimation of a probability of failure. Stat. Comput., In press., 2011.
- Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel Vazquez, Victor Picheny, et al., Fast parallel kriging-based stepwise uncertainty reduction with application to the identification of an excursion set, Technometrics, Taylor & Francis, 56 (4), pp.455-465, 2014.

Methodology

- 3 steps:
 - Interface between the generation of DoE and the code.
 - 2. Construction/Validation GP.
 - 3. Adaptive DoE.

Posterior

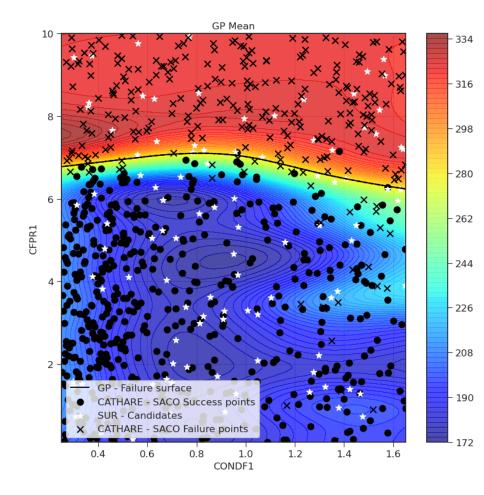
P(f(X)|D)

Initial DoE

 $x \in X$

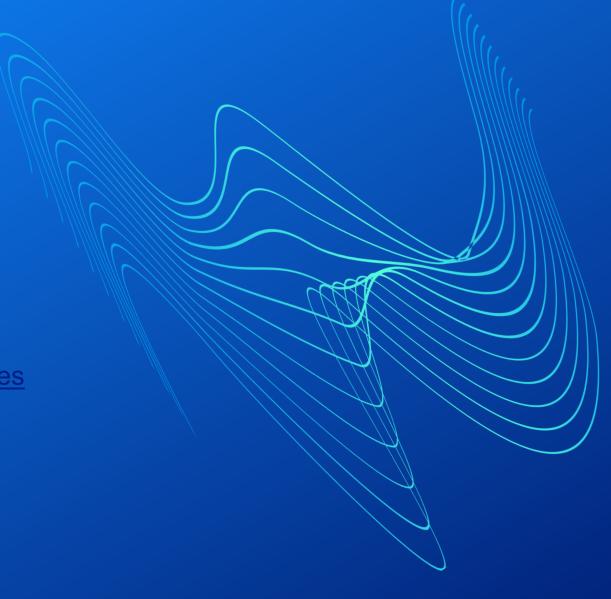
Acquisition function $\alpha(X)$

 $x^{n+1} = \underset{x \in X}{arg \min} \ \alpha(x)$


References:

- J. Mockus, Application of Bayesian approach to numerical methods of global and stochastic optimization. J. Global Optim., 4(4), 347-365, 1994.
- D. Jones, M. Schonlau, and W. Welch, Efficient global optimization of expensive black-box functions. J. Global Optim., 13(4), 455-492, 1998.

Framatome's use case


- We train/validate a GP on an adaptive DoE using Bayesian optimization and Stepwise Uncertainty Reduction (SUR) criterion for TH accidental code applications.
- The estimation of the failure probability is performed by the GP built on the last DoE optimized by Bayesian approach (~2000 calculations)
- Advanced validation with Cathare showed an overestimation of the failure transients prediction by the GP ("too penalizing")
- Reduction of the uncertainty of the failure probability assessment
- The failure probability is around 10⁻⁴, higher than expected: it shows the crucial importance of SACO modeling for reliability estimation in the presence of multi-physics, crossing and threshold effects

Content

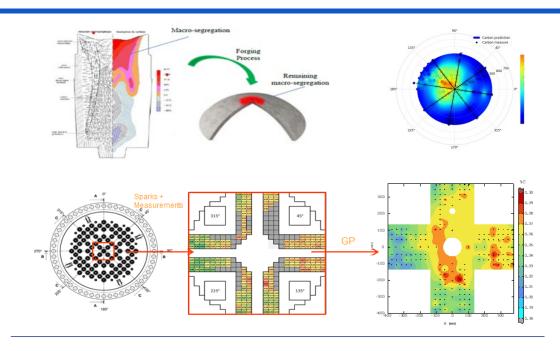
- 1 DSAM Pole presentation & perimeter
- 2. Innovative Embedded Safety Systems
- 3. Advanced Safety Analysis (BEPU) Methods
- 4. Data Analytics & Computer Vision
- 5. Scientific Computer Codes modeling and softwares
- 6. External Partnerships
- 7. Perspectives and Conclusions

Data Analytics, Computer vision

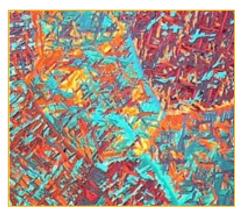
Data Analytics

Applied mathematics, statistics, data viz, power BI, dashboards, geostatistics, ...

Typical application

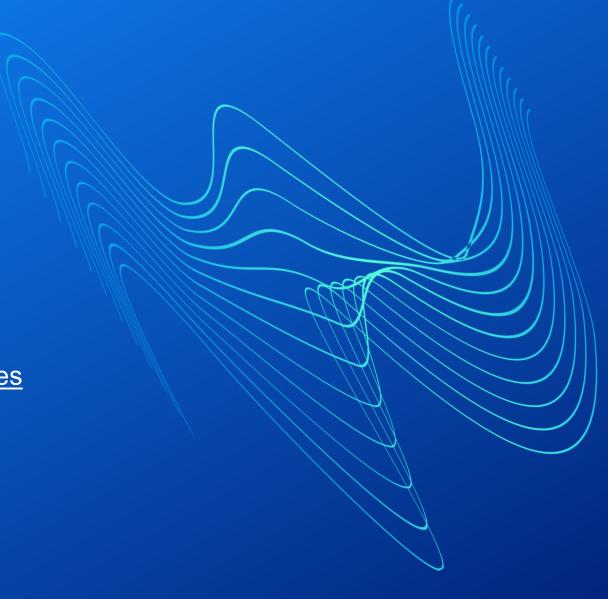

Issues prediction, root cause analysis (corrosion, control rod wear ...), CHF correlation, defensive file regarding quality issues of forged components ...

Computer Vision


Fast inference of CNN deep learning algorithm for edge AI on iOS tablet and cloud update training

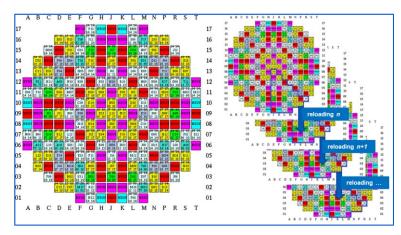
Typical application

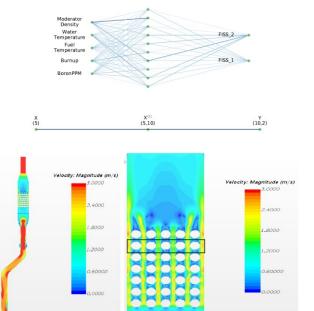
Partially or fully automated NDT & quality control (microstructure alloy analysis, ...)

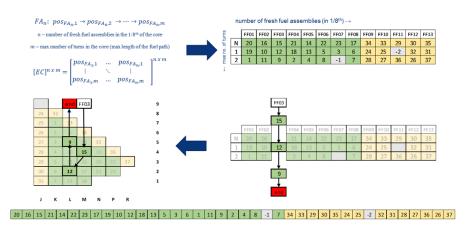


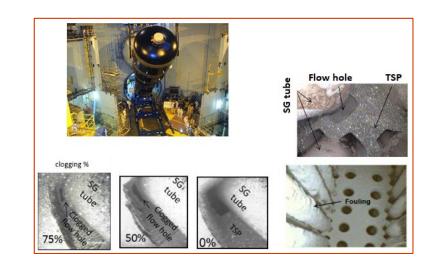
Content

- 1 DSAM Pole presentation & perimeter
- 2. Innovative Embedded Safety Systems
- 3. Advanced Safety Analysis (BEPU) Methods
- 4. Data Analytics & Computer Vision
- 5. Scientific Computer Codes modeling and softwares
- 6. External Partnerships
- 7. Perspectives and Conclusions

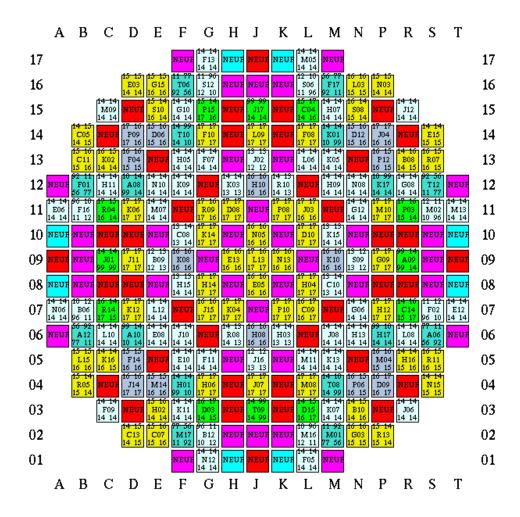

Scientific Computing and Engineering Support


Domain knowledge


System and core TH, CFD, neutronics and core physics, material science, ...


Typical application

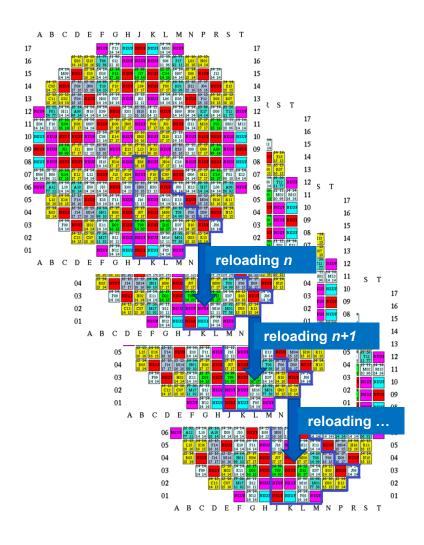
Speed up convergence of scientific computing codes on HPC, Prediction of Steam Generators clogging to optimize maintenance planning, fuel management and loading pattern optimization, ...



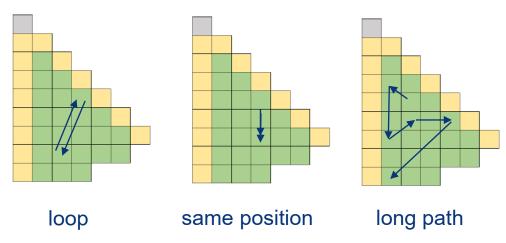
Fuel Loading Pattern Optimization

Operational constraints

- maximize the fuel assemblies' burnup in order to guarantee the best fuel consumption ensuring the best economic performance of the fuel management;
- **lifecycle length** in order to assure a correct nuclear reactor operability during all the life cycle;
- ...

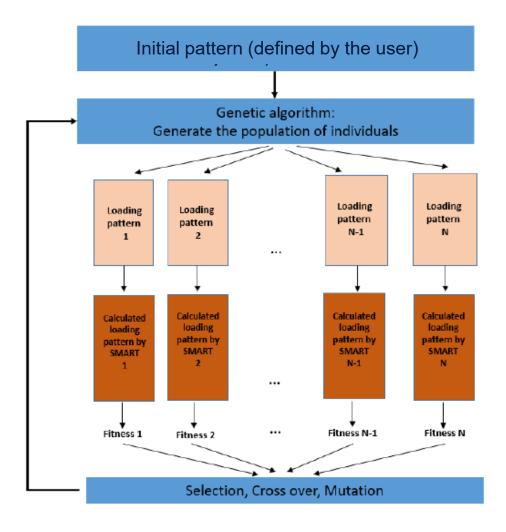

Safety constraints

- limit the core F△H value, to control the power distribution and to prevent from the boiling crisis risks;
- **limit the maximum fuel assembly burnup** at the discharge in order to prevent radiological rejects in case of accident;
- ensure a **negative moderator temperature coefficient** to provide intrinsic nuclear feedbacks in case of accident, which makes the reactor intrinsically safe at its design;
- limiting the maximal fuel assemblies' power in the core periphery to avoid the heavy reflector warming;
- limit the neutron fluency at the core periphery to not damage the reactor vessel;
- ensure maximal number of cycles for a single assembly;
- ...

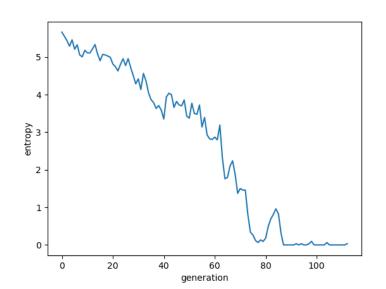


Time consuming activity: ~10⁴⁰ possible configurations

Equilibrium Cycle (EC)


- Universal scheme of fuel shuffling for core campaign
- Shuffling limitations:

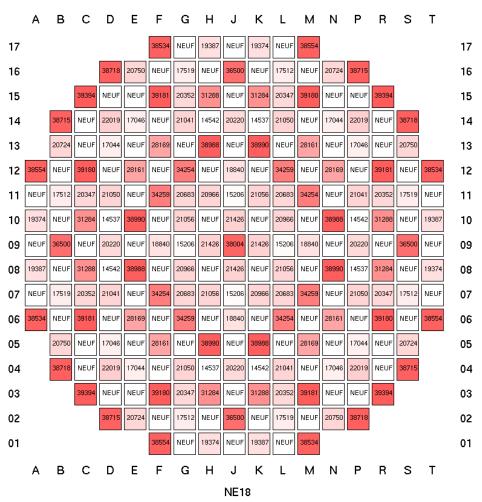
- Optimization criteria:
 - > F_{AH} minimization at BLX for EC
 - > minimization of max($F_{\Delta H}$) during cycle
 - > maximization of average core burnup (cycle length)
- Optimization Assumptions:
 - > ~1/3 of FAs exchanged with fresh fuel
 - > max FA burnup = 60 GWd/t
 - > no loops, no same positions
 - > max length of FAs path ≤ 3



Framework

• Algorithm operates till:

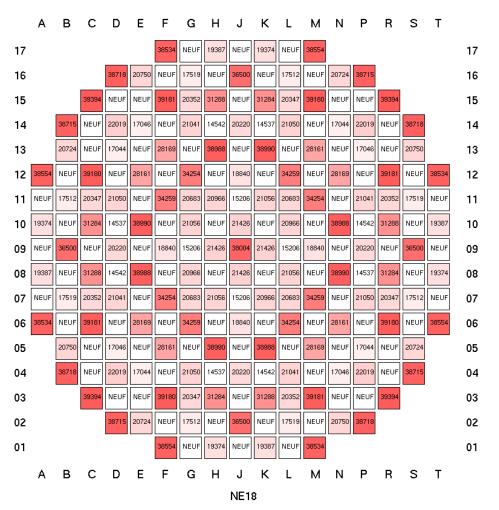
- population is dominated by one (best) specimen
- predefined number of generations is simulated
- Shannon entropy drops below certain value:

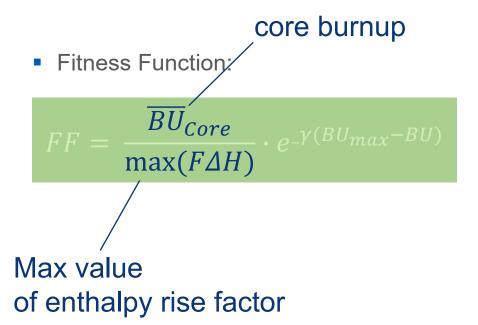

$$H = -\sum_{i,j} P_{ij} \cdot log_{10} P_{ij}$$

$$P_{ij} = \frac{1}{N} \sum_{k=1}^{N} \delta_{ik}$$

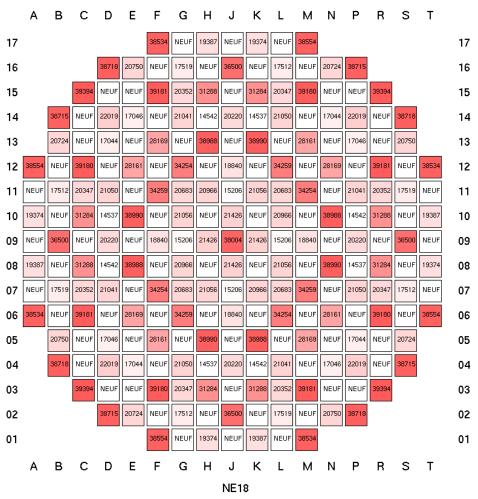
- Shannon entropy describes diversity in the population

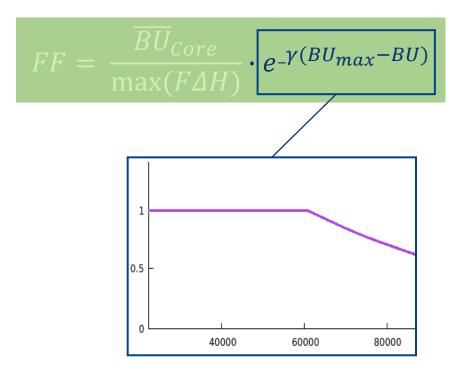
reference core - preliminary benchmark



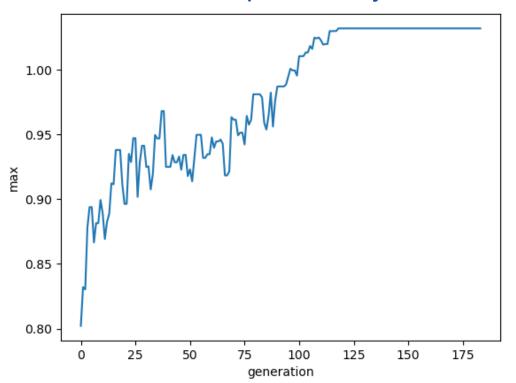

Fitness Function:

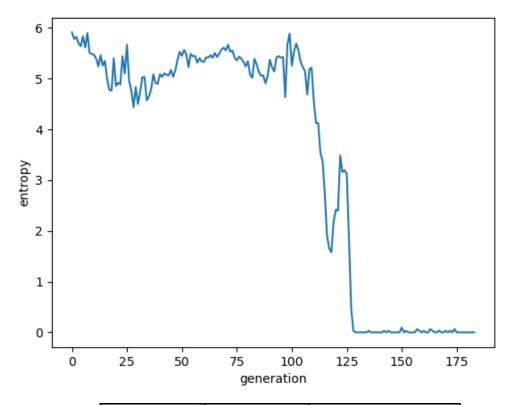
$$FF = \frac{\overline{BU}_{Core}}{\max(F\Delta H)} \cdot e^{-\gamma(BU_{max} - BU)}$$


reference core - preliminary benchmark



reference core - preliminary benchmark




Fitness Function:

reference core - preliminary benchmark

	reference	GA	reference vs	GA
BU Core [EFPD]	483	475	-8	-1,7%
BU Core [MWd/t]	17229	16951	-278	-1,6%
max(FDH)	1,48	1,41	-0,07	-4,7%
BU Assembly [GWd/t]	55,04	54,04	-1,01	-1,8%
FF	1,000	1,033	0,03	3,3%

reference NPP vs GA

	Α	В	С	D	Ε	F	G	Н	J	K	L	М	N	Р	R	s	Т			Α	В	С	D	Ε	F	G	Н	J	K	L	М	N	Р	R	s	Т	
17						390 383 G14 386 380	NEW	194 197 K02 189 193	NEW	197 194 H02 193 189	NEW	383 390 L14 380 386						17	17						192 198 E15 211 211	NEW	NEW	NEW	NEW		198 192 N15 211 211						17
16				388 390 L 15 384 385	209 205 G13 208 206	NEW	189 184 M02 171 154	NEW	388 388 J07 341 342	NEW	184 189 F02 154 171	NEW	205 209 L 13 206 207	390 388 G15 385 384				16	16				374 385 E14 396 402	NEW	NEW	NEW	454 461 F15 506 509	480 506 J12 509 533	461 454 M15 509 506	NEW	NEW	NEW	385 374 N14 402 396				16
15			402 394 L07 395 383	NEW	NEW	394 396 H04 387 388	192 198 E 15 211 211	290 350 A08 270 340	NEW	350 290 T 0 8 340 270	198 192 N15 211 211	396 394 K04 388 387	NEW	NEW	395 402 G07 383 394			15	15			383 395 G11 394 402	457 471 H13 498 508	NEW	221 253 E16 313 338	390 383 G14 386 380	NEW	NEW	NEW	383 390 L14 380 386	253 221 N16 338 313	NEW	4/1 45/ K13 508 497	394 383 L11 402 395			15
14		388 384 C07 390 385	NEW	220 220 H10 220 218	T39 172 C14 172 198	NEW	F04 211 205	126 175 A07 115 164	200 200 J13 204 203	T07 163 115	211 214 M04 205 211	NEW	172 139 R14 198 172	220 220 K10 218 220	NEW	384 388 R07 385 390		14	14		374 396 D13 385 402	457 497 E10 471 508	NEW		270 290 H17 340 350	154 171 F16 184 189	488 472 G12 517 500	342 341 J11 388 388	471 488 L12 500 518	171 154 M16 189 184	290 270 K17 350 340	342 309 L16 370 347	NEW	498 457 N10 508 471	396 374 P13 402 385		14
13		209 207 E11 205 206	NEW	139 172 D15 172 198		221 253 E16 313 338	NEW	385 402 D05 374 396	NEW	402 385 P05 396 374	NEW	253 221 N16 338 313	NEW	172 139 P15 198 172		208 209 N11 206 205		13	13		NEW	NEW	309 347 B11 342 370 3	389 400 D14 399 403	445 468 H15 482 496	211 205 F14 214 211	NEW	187 187 J15 189 189	NEW	205 211 M14 211 214	468 445 K15 496 482	999 389 P14 403 400	347 309 S11 370 342	NEW	NEW		13
12	390 386 D11 383 380	NEW	394 387 P10 396 388	NEW	221 313 B13 253 338	NEW	342 309 L 16 370 347	NEW	187 187 J15 189 189	NEW	309 342 G16 347 370	NEW	313 221 S13 338 253	NEW	387 394 D10 388 396	NEW	386 390 P11 380 383	12	12	192 211 C13 198 211	NEW	221 313 B13 253 338	270 340 2 A10 290 350 4	445 482 C10 468 496	NEW	115 126 G17 164 175	522 499 F13 521 495	NEW	499 522 M13 496 521	126 115 L 17 175 163	NEW	482 445 R10 496 468		313 221 S13 338 253		R13 211 198	12
11	NEW	189 171 S06 184 154	192 211 C13 198 211	214 211 P12 211 205	NEW	342 370 B07 309 347	204 207 M06 207 208	210 211 H06 208 207	173 173 J01 130 130	213 211 K06 209 208	207 204 F06 208 207	370 342 S07 347 309	NEW	211 214 D12 205 211	211 192 R13 211 198	B06 154 184	NEW	11	11	NEW	NEW	390 386 D11 383 380	154 184 2 B12 171 189 2	211 214 D12 205 211	115 163 A11 126 175	208 207 F12 207 204	41 / 444 F17 463 487	130 130 J17 173 173	444 417 M17 487 463	207 208 M12 204 207	164 115 T11 175 126	214 211 P12 211 205	184 154 S12 189 171	386 390 P11 380 383	NEW	NEW	11
10	194 189 S08 197 193	NEW	290 270 K17 350 340	126 115 L 17 175 163	385 374 N14 402 396	NEW	211 208 M10 213 209	NEW	215 214 E13 214 211	NEW	208 210 F 10 207 211	NEW	374 385 E14 396 402	115 126 G17 164 175	270 290 H17 340 350	NEW	189 194 B08 193 197	10	10	NEW	454 506 C12 461 509	NEW	488 518 F11 471 500	NEW	522 521 E12 499 496	417 463 A12 444 487	404 387 H09 406 399	NEW	406 404 J10 399 387	463 417 T12 487 444	N12 N12 495 499	NEW	517 488 M11 500 472	NEW	506 454 R12 509 461	NEW	10
09	NEW	388 342 L09 388 341	NEW	200 203 E09 200 204	NEW	187 189 C09 187 189	T09 173 130 173 130	214 211 E05 215 214	380 380 J04 379 379	214 215 N13 211 214	130 173 A09 130 173	189 187 R09 189 187	NEW	204 200 N09 203 200	NEW	341 388 G09 342 388	NEW	09	09	NEW	F09 480 509	NEW	341 388 G09 342 388 1	187 189 C09 187 189	NEW	130 173 A09 130 173	NEW	P15 198 172	NEW	173 130 T09 173 130	NEW	189 187 R09 189 187	388 342 L09 388 341	NEW	509 480 M09 533 508	NEW	09
08	197 193 S10 194 189	NEW	350 340 K01 290 270	175 164 L01 126 115	402 396 N04 385 374	NEW	211 207 M08 210 208	NEW	211 214 N05 214 215	NEW	209 213 F08 208 211	NEW	396 402 E04 374 385	163 175 G01 115 126	340 350 H01 270 290	NEW	193 197 B10 189 194	08	08	NEW	C06 454 506	NEW	472 500 F07 488 517	NEW	499 495 E06 522 521	444 487 A06 417 463	387 399 J08 404 406	NEW	399 406 K09 387 404	487 444 T06 463 417	N06 521 522	NEW	500 471 M07 518 488	NEW	509 461 R06 506 454	NEW	08
07	NEW	184 154 S12 189 171	198 211 C05 192 211	211 205 P06 214 211	NEW	309 347 B11 342 370	207 208 M12 204 207	208 209 H12 211 213	130 130 J17 173 173	207 208 K12 211 210	208 207 F12 207 204	347 309 S11 370 342	NEW	205 211 D06 211 214	211 198 R05 211 192	154 184 B12 171 189	NEW	07	07	NEW	NEW	383 380 D07 390 386	B06 154 184 2	205 211 D06 211 214	126 175 A07 115 164	207 204 F06 208 207	463 487 F01 417 444	173 173 J01 130 130	487 463 M01 444 417	204 207 M06 207 208	T07 163 115	P06 214 211	189 171 S06 184 154	380 383 P07 386 390	NEW	NEW	07
06	383 380 D07 390 386	NEW	396 388 P08 394 387		253 338 B05 221 313		370 347 L02 342 309	NEW	J03 J03 187 187		347 370 G02 309 342		338 253 S05 313 221	NEW	388 396 D08 387 394	NEW	380 383 P07 386 390	06	06	198 211 C05 192 211	NEW	253 338 B05 221 313	290 350 4 A08 270 340 4	468 496 C08 445 482	NEW	163 175 G01 115 126	F 05 522 499	NEW	495 521 M05 499 522	175 164 L01 126 115	NEW	496 468 R08 482 445	350 290 T08 340 270 :		NEW	R05 211 192	06
05		205 206 E07 209 208	NEW	172 198 D03 139 172	NEW	313 338 E02 221 253	NEW	374 396 D13 385 402	NEW	396 374 P13 402 385	NEW	338 313 NO2 253 221	NEW	198 172 P03 172 139		206 205 N07 207 209		05	05		NEW	NEW	342 370 2 B07 309 347 3	400 403 D04 389 399		F04 211 205		189 189 J03 187 187		211 214 M04 205 211	K03 468 445	403 399 P04 400 389	370 342 S07 347 309	NEW	NEW		05
04		390 385 C11 388 384	NEW	220 218 H08 220 220	172 198 C04 139 172	NEW	211 205 F14 214 211	115 163 A11 126 175	203 204 J05 200 200	164 115 T 1 1 175 126	205 211 M14 211 214	NEW	198 172 R04 172 139	218 220 K08 220 220	NEW	385 390 R11 384 388		04	04		385 402 D05 374 396	471 508 E08 457 498	NEW		340 350 H01 270 290	184 189 F02 154 171	G06 488 471	388 388 J07 341 342		189 184 M02 171 154		370 347 LO2 342 309	NEW	508 471 N08 497 457	402 385 P05 396 374		04
03			394 383 L11 402 395	NEW	NEW	387 388 H14 394 396	211 211 E03 192 198	270 340 A10 290 350	NEW	340 270 T10 350 290	N03 198 192	388 387 K14 396 394	NEW	NEW	383 395 G11 394 402			03	03			395 402 G07 383 394	497-508 H05 457-471	NEW	313 338 E02 221 253	386 380 G04 390 383	NEW	NEW	NEW	380 386 L04 383 390	338 313 N02 253 221	NEW	508 498 K05 471 457 :	402 394 L07 395 383			03
02				384 385 L03 388 390	207 208 G05 209 205	NEW	M16 189 184	NEW	342 341 J11 388 388	NEW	F16 184 189	NEW	206 208 L05 205 209	385 384 G03 390 388				02	02				396 402 E04 374 385	NEW	NEW	NEW	F03 454 461	533 509 J06 506 480	M03 M03 461 454	NEW	NEW	NEW	402 396 N04 385 374				02
01						386 380 G04 390 383	NEW	189 193 K16 194 197	NEW	193 189 H16 197 194	NEW	380 386 L04 383 390						01	01						E03 192 198	NEW	NEW	NEW	NEW	NEW	N03 198 192						01
	Α	В	С	D	Ε	F	G	Н	J	Κ	L	М	N	Р	R	s	Т			Α	В	С	D	E	F	G	Н	J	K	L	М	N	Р	R	s	Т	

reference NPP vs GA

limitation of FF=BU/FDH

	Α	В	С	D	Е	F	G	Н	J	Κ	L	М	Ν	Р	R	s	T			Α	В	С	D	Е	F	G	Н	J	K	L	М	N	Р	R	s	Т	
17						390 383 G14 386 380	NEW	194 197 K02 189 193	NEW	197 194 H02 193 189	NEW	383 390 L14 380 386						17	17						192 198 E 15 211 211	NEW	NEW	NEW	NEW		198 192 N15 211 211						17
16					209 205 G13 208 206	NEW	189 184 M02 171 154	NEW	388 388 J07 341 342	NEW	184 189 F02 154 171		205 209 L13 206 207					16	16				374 385 E14 396 402	NEW	NEW	NEW	F15 506 509	480 506 J12 509 533	461 454 M15 509 506	NEW	NEW	NEW	385 374 N14 402 396				16
15			395 383			387 388	211 211	270 340		340 270	N15 N15 211 211	388 387			383 394			15	15			383 395 G11 394 402	457 471 H13 498 508	NEW	221 253 E16 313 338	390 383 G14 386 380	NEW	NEW	NEW	383 390 L14 380 386	253 221 N16 338 313	NEW	K13 K13 508 497	394 383 L 1 1 402 395			15
14		388 384 C07 390 385	NEW	220 220 H10 220 218	139 172 C14 172 198	NEW	F04 211 205	A07 115 164	200 200 J13 204 203	T07 163 115	211 214 M04 205 211	NEW	172 139 R14 198 172	220 220 K10 218 220	NEW	384 388 R07 385 390		14	14		374 396 D13 385 402	457 497 E10 471 508	NEW	309 342 G16 347 370	270 290 H17 340 350	F16 184 189	488 472 G12 517 500	342 341 J11 388 388	471 488 L12 500 518	M16 189 184		342 309 L 16 370 347	NEW	N10 508 471	396 374 P13 402 385		14
13		209 207 E11 205 206	NEW	D15 172 198	NEW	221 253 E16 313 338	NEW	385 402 D05 374 396	NEW	402 385 P05 396 374	NEW	253 221 N16 338 313	NEW	172 139 P15 198 172	NEW	208 209 N11 206 205		13	13		NEW	NEW	309 347 B11 342 370	389 400 D14 399 403	445 468 H15 482 496	211 205 F14 214 211	NEW	J15 J15 189 189	NEW	205 211 M14 211 214	468 445 K15 496 482	999 389 P14 403 400	347 309 S11 370 342	NEW	NEW		13
12	390 386 D11 383 380	NEW	394 387 P10 396 388	NEW	221 313 B13 253 338	NEW	342 309 L16 370 347	NEW	187 187 J15 189 189	NEW	309 342 G16 347 370	NEW	313 221 S13 338 253	NEW	387 394 D10 388 396	NEW	386 390 P11 380 383	12	12	192 211 C13 198 211	NEW	221 313 B13 253 338	270 340 A10 290 350	445 482 C10 468 496	NEW	115 126 G17 164 175	522 499 F13 521 495	NEW		126 115 L 17 175 163	NEW	482 445 R10 496 468		313 221 S13 338 253	NEW	R13 211 198	12
11	NEW	189 171 S06 184 154	C13 198 211	P12 P12 211 205	NEW	342 370 B07 309 347	204 207 M06 207 208	210 211 H06 208 207	173 173 J01 130 130	213 211 K06 209 208	207 204 F06 208 207	370 342 S07 347 309	NEW	211 214 D12 205 211	211 192 R13 211 198	B06 154 184	NEW	11	11	NEW	NEW	390 386 D11 383 380	154 184 B12 171 189	211 214 D12 205 211	115 163 A11 126 175	208 207 F12 207 204	417 444 F17 463 487	130 130 J17 173 173	M17 M17 487 463	207 208 M12 204 207	164 115 . T11 175 126 2	P12 P12 211 205	S12 189 171	P11 380 383	NEW	NEW	11
10	194 189 S08 197 193	NEW		126 115 L17 175 163		NEW	211 208 M10 213 209		215 214 E13 214 211	NEW	208 210 F 10 207 211	NEW	374 385 E14 396 402	G17 G17 164 175		NEW	189 194 B08 193 197	10	10	NEW	454 506 C12 461 509	NEW	488 518 F11 471 500	NEW	522 521 E12 499 496	417 463 A12 444 487	404 387 H09 406 399	NEW	406 404 J10 399 387	463 417 T12 487 444	N12 N12 495 499	NEW	M17 488 M11 I 500 472	NEW	506 454 R12 509 461	NEW	10
09	NEW	388 342 L09 388 341	NEW	E09 200 203 200 204	NEW	187 189 C09 187 189	T09 173 130 173 130	214 211 E05 215 214	380 380 J04 379 379	214 215 N13 211 214	130 173 A09 130 173	189 187 R09 189 187	NEW	204 200 N09 203 200	NEW	341 388 G09 342 388	NEW	09	09	NEW	F09 480 509	NEW	341 388 G09 342 388	187 189 C09 187 189		130 173 A09 130 173	NEW	172 139 P15 198 172		173 130 T09 173 130	NEW	R09 R09 189 187	388 342 L09 388 341	NEW	509 480 M09 533 506	NEW	09
08	197 193 S10 194 189	NEW		175 164 L01 126 115	402 396 NO4 385 374	NEW	211 207 M08 210 208		211 214 N05 214 215	NEW	209 213 F08 208 211	NEW	396 402 E04 374 385	G01 115 126	340 350 H01 270 290	NEW	193 197 B10 189 194	08	80	NEW	C06 454 506	NEW	472 500 F07 488 517	NEW	499 495 E06 522 521	444 487 A06 417 463	387 399 J08 404 406	NEW	399 406 K09 387 404	487 444 T06 463 417	NO6 521 522	NEW	M07 518 488	NEW	509 461 R06 506 454	NEW	08
07	NEW	184 154 S12 189 171	198 211 C05 192 211	P06 214 211	NEW	309 347 B11 342 370	207 208 M12 204 207	208 209 H12 211 213	130 130 J17 173 173	207 208 K12 211 210	208 207 F12 207 204	347 309 S11 370 342	NEW	205 211 D06 211 214	211 198 R05 211 192	154 184 B12 171 189	NEW	07	07	NEW	NEW	383 380 D07 390 386	B06 154 184	205 211 D06 211 214	126 175 A07 115 164	207 204 F06 208 207	463 487 F01 417 444	173 173 J01 130 130	487 463 M01 444 417	204 207 M06 207 208	T07 T07 163 115	P06 214 211	189 171 S06 184 154	P07 386 390	NEW	NEW	07
06	383 380 D07 390 386	NEW	396 388 P08 394 387	NEW	253 338 B05 221 313	NEW	370 347 L02 342 309	NEW	189 189 J03 187 187	NEW	347 370 G02 309 342	NEW	338 253 S05 313 221	NEW	388 396 D08 387 394	NEW	380 383 P07 386 390	06	06	198 211 C05 192 211	NEW	253 338 B05 221 313	290 350 A08 270 340	468 496 C08 445 482	NEW	163 175 G01 115 126	521 496 F05 522 499	NEW	M05 499 522	175 164 L01 126 115	NEW	196 468 R08 482 445		338 253 S05 313 221	NEW	211 198 R05 211 192	06
05		205 206 E07 209 208	NEW	D03 139 172	NEW	313 338 E02 221 253	NEW	374 396 D13 385 402	NEW	396 374 P13 402 385	NEW	338 313 N02 253 221	NEW	198 172 P03 172 139	NEW	206 205 N07 207 209		05	05		NEW	NEW	342 370 B07 309 347	400 403 D04 389 399	482 496 H03 445 468	F04 211 205	NEW	J03 J03 187 187	NEW	211 214 M04 205 211		P04 P04 400 389	370 342 S07 347 309	NEW	NEW		05
04		390 385 C11 388 384		220 218 H08 220 220		NEW	211 205 F14 214 211	115 163 A11 126 175	203 204 J05 200 200	164 115 T 11 175 126	205 211 M14 211 214	NEW		218 220 K08 220 220	NEW	385 390 R11 384 388		04	04		385 402 D05 374 396	471 508 E08 457 498	NEW	347 370 G02 309 342	340 350 H01 270 290	F02 154 171	G06 488 471	388 388 J07 341 342		189 184 M02 171 154	350 340 3 K01 290 270 3	370 347 L02 342 309	NEW	508 471 N08 497 457	402 385 P05 396 374		04
03			394 383 L11 402 395	NEW	NEW	387 388 H14 394 396	211 211 E03 192 198		NEW	340 270 T 10 350 290	211 211 N03 198 192	388 387 K14 396 394	NEW	NEW	383 395 G11 394 402			03	03			395 402 G07 383 394	497 508 H05 457 471	NEW	313 338 E02 221 253	386 380 G04 390 383	NEW	NEW	NEW		338 313 N02 253 221	NEW	508 498 4 K05 471 457 2	402 394 L07 395 383			03
02				384 385 L03 388 390	207 208 G05 209 205	NEW	171 154 M16 189 184	NEW	342 341 J11 388 388	NEW	F16 184 189	NEW	206 208 L05 205 209	385 384 G03 390 388				02	02				396 402 E04 374 385	NEW	NEW	NEW	F03 F03 454 461	533 509 J06 506 480	M03 461 454	NEW	NEW	NEW	402 396 N04 385 374				02
01						386 380 G04 390 383	NEW	189 193 K16 194 197	NEW	193 189 H16 197 194	NEW	380 386 L04 383 390						01	01						211 211 E03 192 198	NEW	NEW	NEW	NEW	NEW	211 211 N03 198 192						01
	Α	В	С	D	Ε	F	G	Н	J	К	L	М	N	Р	R	s	Т			Α	В	С	D	E	F	G	Н	J	K	L	М	N	Р	R	s	Т	

reference NPP GA

0.9308 N [411]	1.1708	1.2874	1.1685	1.1353 P5 [411]	1.0601	1.0998 P4 [411]	0.9179	0.9787 N [411]	09	0.9288 N [411]	1.1124	1.1139	1.2647	1.1220 P5 [411]	0.9359	1.2174 P4 [411]	1.0466	0.9749 N [411]	09
1.1708	1.2843 N [411]	1.1741	1.1719 N [411]	0.9135	1.1248	0.9509	1.1977 N [411]	0.8008	08	1.1124	1.0164 N [411]	0.8963	0.8943 N [411]	1.2230	0.9523	1.2585	0.9114 N [411]	0.8043	08
1.2874	1.1740	1.0729 N [411]	0.9364	1.1193 P2 [411]	1.0733	1.0459 P3 [411]	1.0755	0.8842	07	1.1139	0.8960	0.9930 N [411]	1.0943	0.9360 P2 [411]	1.0444	0.9495 P3 [411]	1.224	0.8489	07
1.1685	1.1719 N [411]	0.9364	1.2142	0.9969	1.1925 N [411]	0.9563	0.9879 N [411]	0.3965	06	1.2647	0.8943 N [411]	1.0943	1.2052	1.1184	1.1639 N [411]	1.2058	1.1235 N [411]	0.5759	06
1.1353 P5 [411]	0.9135	1.1193 P4 [411]	0.9969	1.2382 P5 [411]	1.2373	1.2121 P5 [41]	0.6638		05	1.1220 P5 [411]	1.2230	0.9360 P4 [411]	1.1184	1.1521 P5 [411]	1.1422	1.1669 P5 [411]	1.0384		05
1.0600	1.1248	1.0733	1.1925 N [411]	1.2373	1.1074 N [411]	0.9760	0.3524		04	0.9359	0.9523	1.0443	1.1639 N [411]	1.1422	1.0714 N [411]	0.7735	0.3771		04
1.0998 P4 [411]	0.9509	1.0459 P3 [411]	0.9563	1.2121 P1 [411]	0.9760	0.4039 N [411]			03	1.2174 P4 [411]	1.2585	0.9495 P3 [411]	1.2058	1.1669 P1 [411]	0.7735	0.3458 N [411]			03
0.9179	1.1977 N [411]	1.0754	0.9879 N [411]	0.6638	0.3524				02	1.0466	0.9114 N [411]	1.2247	1.1238 N [411]	1.0384	0.3771				02
0.9787 N [411]	0.8008	0.8842	0.3965						01	0.9749 N [411]	0.8043	0.8489	0.5758						01
J	К	L	М	N	Р	R	s	Т		J	К	L	M	N	Р	R	S	т	

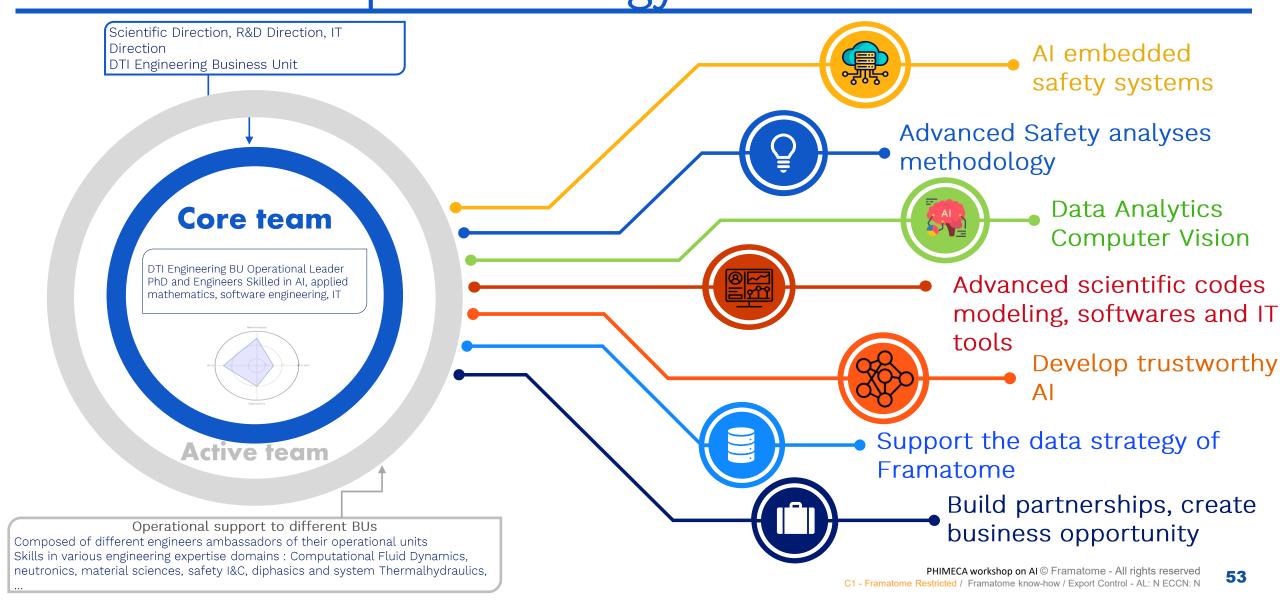
Summary and conclusion

GA – Copilote coupling:

- Chromosome form was defined, two forms were studied, coupling: GA>Chromosome>SMART done (Python 3.8, deap library)
- Tests with simple model for validation of chromosome structure (ordering algorithm) and GA parameters tuning (cx pb, mut pb, N individuals, ...)
- Algorithm seems to be working correctly, after ~20h of operation it can propose a core with reasonably low FDH and long cycle, maintaining max burnup close to the given level (preliminary reference NPP benchmarking)
- Copilote procedure still needs to be developed (current version should be updated)

Next steps

- More tests, different forms of Fitness Functions and Penalty Factors, other parameters optimization
- Verify simplified calculations (boron criticality calculations vs full axial offset research by control rod calculations)
- Development of core codes surrogate models strategies coupled with black box optimization algorithms
- Benchmark of black box optimization algorithms and core codes packages.
- Implement ¼th symmetry, possible use of 2D chromosome
- Modify the GA to shuffle fresh fuel between parts A and B (between 1/4th and 1/8th regions)
- Use GA for single reload problem
- Application of GA to other problems, like Fuel Assembly design


Conclusion

- AI uses cases are intensively developed for various nuclear applications in Framatome company and EDF group to support current engineering processes, methods and to foster innovation and next generation of nuclear products and services
 - This technological brick will be probably needed to improve performance, cost competitiveness and safety of NPPs, in particular to allow flexible operations and power uprates of existing NPPs

- Those promising benefits of AI comes with limitations and threats regarding certification and licensing for safety critical related applications
 - Safety authorities upcoming regulatory guidelines (AIEA technical meeting on AI & safety), AI Act (EU), ...
 - Interpretability, robustness and trustworthiness are the current technical challenging limitations of AI

 Data / AI governance, dedicated advanced skills in applied mathematics, IT, combined with nuclear engineering and physics knowledge are strongly needed to cope with these challenges

Framatome Data science & Applied Mathematics pole strategy in a nutshell

